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Problem definition: With the growing availability of patient-level data and advanced data analytics tools,

hospitals are increasingly developing prediction models to improve operational efficiency. This study evalu-

ates three modeling approaches for predicting Emergency Department (ED) occupancy using patient-level

information: time-series models enhanced with summary statistics of current ED patients, bottom-up models

that aggregate individual patient-level predictions, and deep set neural networks that predict occupancy

directly from the concatenation of all patient-level information available. Methodology/Results: Our

results show that time-series models, despite their simplicity and relatively low complexity, significantly ben-

efit from the inclusion of summary information about current ED patients, leading to a 15-30% reduction

in Mean Absolute Error (MAE). Bottom-up approaches, offering dual-level (patient and ED) predictions,

not only improve interpretability, but also significantly improve occupancy prediction accuracy by 35% com-

pared to time-series models. However, to achieve these gains, we show that bottom-up pipelines require an

additional calibration step (and careful re-calibration over time). Meanwhile, deep set models show promise

with performance between that of time-series and bottom-up models. However, their performance on low-

volume days suggests limitations for smaller institutions. We assess the robustness of our findings across

different prediction horizons and validate our results using data from 10 additional hospitals. Managerial

implications: This study demonstrates the value of leveraging patient-level data in improving ED occu-

pancy prediction and highlights the importance of model selection, calibration, and fine-tuning when using

patient-level data to predict ED occupancy.

Key words : Patient-level prediction, machine learning, deep learning, calibration, bias, nonstationarity,

distribution shift, ED occupancy, healthcare
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1. Introduction

To improve their operations, hospitals have been developing and deploying analytics tools to pre-

dict key indicators of future medical needs and supplies, such as future arrivals to the Emergency

Department (ED; Wargon et al. 2009), daily inpatient admissions (Zhou et al. 2018), discharges

(McCoy et al. 2018), and medical bookings (Piccialli et al. 2021). Time-series models are par-

ticularly relevant and accurate for estimating such system-level quantities. In recent year, these

models have benefited from advancements in nonlinear machine learning methods, including Meta’s

Prophet toolbox (see McCoy et al. 2018, for an example on discharge volume prediction), general

regression neural networks (see Duarte et al. 2021, for an application to ED volume forecasting),

and long short-term memory models (see Borges and Nascimento 2022, in the context of COVID-

19). Many studies have also investigated the value of external data, such as weather variables (see

Wargon et al. 2009, for a review) or internet search trends (Tideman et al. 2019, Trevino et al.

2022, Fan et al. 2022), in making more accurate predictions for system-level quantities.

Concurrently, the increasing availability of granular and multimodal data in electronic health

records (EHRs) creates opportunities to predict a myriad of patient-level outcomes, including

length of stay, mortality, and readmissions (see, e.g., Awad et al. 2017, Xiao et al. 2018, Stone et al.

2022, Bacchi et al. 2022, for reviews). Potentially, these patient-level predictions can be aggregated

to make even more accurate system-wide forecasts, which, in turn, can be inform better decisions

regarding capacity dimensionning, staff and appointment scheduling, and dynamic resource alloca-

tion. For example, recent studies have aggregated patient-level length of stay predictions to predict

unit-level occupancy (Bertsimas et al. 2021, Wang et al. 2022, King et al. 2022).

However, analyzing raw EHR data is complicated due to data quality issues (Feder 2018), the

presence of missing information (Kharrazi et al. 2014), and the prevalence of unstructured data

(Tayefi et al. 2021). In addition, integrating analytics-based approaches into real-life decision-

making introduces further challenges related to real-time data extraction and processing, commu-

nication and interpretation of analytical results, and adoption of the tool by practitioners, which

become more significant as the complexity of the data and models increases.

Furthermore, recent studies that aggregate patient-level length of stay predictions to forecast

future hospital occupancy (e.g., Bertsimas et al. 2021, Wang et al. 2022, King et al. 2022) report

estimates that appear to be biased1. This suggests that aggregating patient-level predictions for

overall occupancy estimation may introduce non-trivial issues that have been overlooked.

Alternatively, recent models in the deep learning literature, such as the deep sets of Zaheer et al.

(2017), are designed to handle size-varying inputs, such as concatenating patient-level information

1 For example: “The prediction pipeline underestimated the number of admissions within the 8-hour window but
performed better than the benchmark.” (King et al. 2022)
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for patients currently present in the hospital or unit. These models could predict system-level quan-

tities like occupancy or discharges directly, leveraging the rich information contained in patient-level

data. To the best of our knowledge, however, this methodology is not widely known, let alone used,

in the healthcare operations literature.

Given that many important operational decisions are made at a less granular level, for which

time-series models are well suited, one might wonder whether the benefits of using patient-level data

outweigh the increased complexity. In this paper, we use the prediction of occupancy in the emer-

gency department (ED) as an example to investigate whether and how patient-level information

can enhance predictions on system-wide quantities. Our goal is to shed light on the opportuni-

ties and challenges of working with patient-level information and provide a practical roadmap for

analytics teams in healthcare organizations considering sophisticated patient-level predictions to

improve their system operations.

We have access to data from the ED of a high-volume academic hospital and aim to predict

short-term occupancy. We evaluate three models: a time-series model; a bottom-up model that

predicts the remaining length of stay for each patient in the ED and aggregates these predictions;

and a direct model using deep set neural networks (Zaheer et al. 2017) to predict future occupancy

directly from the concatenation of all patient information. We present our data and introduce our

three models in Section 2. Additionally, we analytically explain the emergence of systematic bias

in the bottom-up model, as experienced in the literature (Bertsimas et al. 2021, Wang et al. 2022,

King et al. 2022), and propose effective solutions to correct it. At a high-level, this bias comes

from a misalignment between the patient- and system-level prediction tasks, leading to a sort of

inspection paradox (Stein and Dattero 1985).

We then study each model separately. In Section 3, we demonstrate the power of time-series

models, especially nonlinear models and those incorporating summary information about current

ED patients. In Section 4, we implement bottom-up models, confirming the bias resulting from the

misalignment between the patient-level predictive task and the downstream system-level task, and

illustrating the effectiveness of the calibration steps we proposed. In Section 5, we develop a deep

set architecture to predict ED occupancy directly and investigate the nature and relevance of the

patient embedding learned with this approach.

Finally, in Section 6, we compare the performance of the time-series, bottom-up, and direct

models on our test period. As many healthcare (and real-world) environments, our setting suffers

from strong nonstationarities. We discuss the challenges in accurately detecting distributional shifts

in practice, especially when using patient-level data, and propose simple retraining strategies to

(partially) alleviate the decalibration of models over time. We assess the robustness of our findings

in Section 7 by evaluating the effect of the prediction horizon and replicating our analysis in 10

additional hospitals.
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Table 1 Prediction horizons typically used in short-term ED occupancy prediction.

Study Prediction horizon

Zeltyn et al. (2011) 8 hours
Schweigler et al. (2009) 4 and 12 hours
Jones et al. (2009) 1 to 24 hours
Whitt and Zhang (2019) 1 to 6 hours
Cheng et al. (2021) 1 to 4 hours
King et al. (2022) 4 hours
Tuominen et al. (2023) 1 to 24 hours
Tuominen et al. (2024) 24 hours

2. Problem Description and Modeling

In this section, we first describe our ED occupancy problem in Section 2.1 and the data we have

access to in Section 2.2. Then, in Section 2.3, we introduce the three families of models that can be

(and, for some of them, have been) used to address this problem. In Section 2.4, we conclude this

section by analyzing the emergence of bias in bottom-up approaches and propose simple calibration

steps to correct it.

2.1. Case Study: Short-Term ED Occupancy Prediction

Predicting short-term occupancy in the ED is an important question for daily operations, espe-

cially to identify needs for surge staffing (see, e.g., Hu et al. 2021). Typically, ‘short-term’ for ED

operations mean ‘within the next hours’. Indeed, several studies in the literature have been inter-

ested in predicting future ED occupancy with varying prediction horizons (ranging from one hour

to one day; see Table 1), in order to inform operational decisions like ambulance diversion (Lagoe

and Jastremski 1990, Lin et al. 2015, Katayama et al. 2017), surge staffing (Zeltyn et al. 2011, Hu

et al. 2023), bed planning (King et al. 2022), or early warning systems (Tuominen et al. 2023). In

our main study, we restrict our attention to predicting occupancy four hours ahead, but confirm

the robustness of our findings to the prediction horizon in Section 7.1.

At a given point in time, total future occupancy can be decomposed into two components. First,

the number of patients who are currently in the ED and that will still be in the ED in four hours.

Second, patients who might arrive to the ED within the next four hours and stay sufficiently long

to still be here in four hours. In this paper, since we are interested in developing and aggregating

patient-level predictions, we focus our attention on the first component, namely the contribution of

current ED patients to the 4-hour ED occupancy, which we will refer to as ‘remaining occupancy’

in the rest of the paper. Note that the second component can be estimated separately, e.g., using

Poisson regression (see King et al. 2022, for an example in a healthcare setting).

To illustrate the complexity of predicting short-term occupancy, Figure 1(a) shows the daily

occupancy and ‘remaining occupancy’ at our partner hospital throughout the study period, with
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(a) Monthly occupancy and remaining occupancy at our partner hospital

(b) Rolling 30-day average of the fraction of current ED patients staying at least four hours

Figure 1 Average occupancy and average remaining occupancy in a high-volume academic hospital in Korea in

2016–2019.

averages calculated for each month. From this, we observe that the remaining occupancy fluctuates

over time, mirroring fluctuations in occupancy. However, Figure 1(b), which displays the ratio of

remaining occupancy to current occupancy, shows that the remaining occupancy cannot be simply

predicted as a constant fraction of the current occupancy. The significant variation in the ratio of

remaining to current occupancy highlights the challenge of our prediction task.

2.2. Data

We use data from a high-volume academic hospital in South Korea. Our data consists of all 306,317

ED visits between January 9, 2016 and December 31, 2019. We exclude 8 patients for whom the

recorded arrival or departure time was missing, so our final dataset comprises 306,309 patients. We

apply no further exclusion criteria, such as missing data or extreme length of stay.

Most of the patient-level information is available at triage, shortly after the patient arrives at

the ED. Our data include demographic information about the patient (age and sex). In addition,
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several clinical features are obtained at triage: measurements of systolic blood pressure (SBP),

diastolic blood pressure (DBP), pulse rate (PR), respiration rate (RR), body temperature (Temp),

and oxygen saturation (SpO2). Finally, South Korea has implemented a scoring system called

the Korean Triage and Acuity Score (KTAS) which assigns a score from 1 (resuscitation) to 5

(non-urgent) depending on the patient’s urgency (Kwon et al. 2018). Despite variability in the

label and definition of each category, scoring systems are a common practice for patient triage

in many countries. Beyond South Korea, the Emergency Severity Index in the United States, the

Australasian Triage Scale, or the Canadian Triage and Acuity Scale, for example, implement a

similar five-level scoring system for ED patients (see Gilboy et al. 2005, chapter 2). In our data,

we observe that all these clinical features (vital sign measurements and KTAS score) are recorded

within 6 minutes of the patient’s arrival to the ED on average, with a standard deviation of 6.8

minutes. Given that this information is available shortly after arrival, we consider it as available

upon arrival and use it to base our patient-level predictions. For simplicity, we restrict our attention

to the data collected upon the patient’s arrival and do not update it as the patient stays.2 We do so

also to be consistent with our robustness analysis in Section 7.2, where we us a national database

to replicate our analysis to multiple hospitals and do not have access to dynamic variables. See

Online Supplement EC.3 for summary statistics for ED length of stay (LoS) and all patient-level

features.

Throughout our study, for all our predictive tasks, we treat the data from January 9, 2016 to

December 31, 2018 as the training set, and the data from January 1, 2019 to December 31, 2019 as

the test set. See Online Supplement EC.1 for a detailed description of the machine learning models

and performance metrics used.

2.3. Modeling

Consider N patients observed over T time periods. For each patient i = 1, . . . ,N and each time

period t= 1, . . . , T , δi,t ∈ {0,1} indicates whether patient i is present in the ED at time t.

At time t, we denote Nt :=
∑N

i=1 δi,t the number of patients in the ED. We are interested in

predicting the ‘remaining occupancy’, i.e., how many of these Nt patients will still be in the ED at

time t+1. Formally, we are interested in

zt+1 =
∑

i:δi,t=1

δi,t+1. (1)

Again, we emphasize that zt+1 does not correspond to the ED occupancy at time t+1, but only

to the number of patients that were in the ED at time t and stayed until t+1. In particular, we

2 Integrating time-varying values of vital signs or other laboratory or examination results should presumably improve
the performance of patient-level models, at the expense of a more sophisticated software integration (e.g., triage data
are often stored in a different database than the data collected during the rest of the ED visit).
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have zt+1 ≤Nt and zt+1 ≤Nt+1. With these notations, Figure 1(a) represents the monthly average

of Nt (pink bars) and zt+1 (blue bars) in our dataset, and Figure 1(b) zt+1/Nt. To estimate zt+1,

we need to estimate individual survival probabilities, P(δi,t+1 = 1|δi,t = 1).

2.3.1. Time-Series Models Time-series approaches implicitly assume that survival prob-

abilities do not depend on patient characteristics but only on time-related features, leading to

estimates of the form

ẑtst+1 =Nt ×φ(xtime
t ),

where xtime
t is a vector of time-related features (e.g., time of day, day of the week) at time t. The

regression function φ can be estimated from data, using any supervised learning (here, regression)

technique. For example, if we are interested in predicting average future occupancy, φ can be

obtained by minimizing the empirical mean square error, i.e., solving

min
φ

1

T

N∑
t=1

(zt+1 −Nt ×φ(xtime
t ))

2
, (2)

while other loss functions can be used for quantile prediction (the pinball loss, see Sun et al. 2012).

Recent methods apply hierarchical forecasting for predicting occupancy in several sub-units as well

as in the entire ED, simultaneously and consistently (Bertani et al. 2025).

2.3.2. Aggregation of Patient-Level Predictions Alternatively, there is a growing interest

in prediction of personalized survival probabilities (e.g., Gill et al. 2018, Bertsimas et al. 2021,

Wang et al. 2022, Arora et al. 2023). In this setting, we leverage information about individual

patients at each point in time, such as the severity of their condition or their current length of

stay, which we denote xpatient
i,t . We construct a model for the remaining occupancy zt+1 by using a

two-step, bottom-up approach: First, we construct a model φ(xpatient
i,t ) to predict δi,t+1. Then, we

estimate zt+1 as

ẑbottom-upt+1 =
∑

i:δi,t=1

φ(xpatient
i,t ).

Note that xpatient
i,t may contain time-dependent covariates (xtime

t ) or information about other

patients present in the ED (e.g., number of severe patients at time t). In particular, these features

can capture interaction effects (e.g., slow-downs (Kc and Terwiesch 2009)) between patients.

An additional benefit from bottom-up approaches is their flexibility. Indeed, they can generate

estimates for sub-units (e.g., patients in the observation area of the ED) or sub-categories of

patients (e.g., high-acuity patients) by simply restricting the summation to a subset of {i : δi,t = 1}.
However, as we show analytically in Section 2.4, bottom-up approaches require careful calibration

of the estimates of φ(xpatient
i,t ) to generate unbiased estimates, and calibration needs to be performed

for each sub-group of interest.
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2.3.3. Deep Set Models With the recent advances in deep learning, one could envision

building a neural network model to predict zt+1 directly from the concatenation of all patient

covariates, {xpatient
i,t }i:δi,t=1. Since the prediction should be invariant to any permutation of the

patient indexes, one can without loss of generality consider models of the form

ẑdirectt+1 = ρ

(∑
i

ϕ(xpatient
i,t )

)
,

with arbitrary functions ϕ and ρ (Zaheer et al. 2017, theorem 2). Estimators of these forms have

been proposed in Zaheer et al. (2017) and referred to as deep set estimators. In particular, ϕ(x) can

be interpreted as an embedding of the patient information into a (potentially multi-dimensional)

latent space.

This direct approach further generalizes the bottom-up approach described above, hence is poten-

tially more powerful. For example, it can learn interactions between patients directly from data,

while the bottom-up approach requires a priori feature engineering to do so. However, a deep set

model may be harder to learn from data for at least two reasons: First, it requires to learn two

functions, ϕ and ρ, simultaneously, while the bottom-up approach fixes ρ to be the identity. Second,

the encoding ϕ is learned in a semi-supervised way, with the objective to minimize the prediction

error of ẑdirectt+1 , which is obtained after aggregating individual embeddings. On the contrary, the

bottom-up approach considers a special case, where the embedding φ(xpatient
i,t ) is the solution of a

patient-level prediction problem, and uses the patient-level labels δi,t+1.

2.4. Bias when aggregating patient-level predictions and potential solutions

Unlike in the time-series and direct approaches, the predictive models used in the bottom-up

approach are patient-level models specifically designed to predict outcomes at the patient level.

These outcomes are closely related to, yet distinct from, the system-level quantity of interest, zt+1.

Several studies have documented the emergence of bias when aggregating patient-level predictions

for occupancy forecasting (Bertsimas et al. 2021, Wang et al. 2022, King et al. 2022). We now

expose the mechanisms that explain the occurrence of such bias, which are reminiscent of the

inspection paradox in applied probability (Stein and Dattero 1985).

With our notations, the average bias of the prediction ẑbottom-upt+1 can be expressed as

1

T

T∑
t=1

(
zt+1 − ẑbottom-upt+1

)
=

1

T

∑
(i,t)∈S

(
δi,t+1 −φ(xpatient

i,t )
)
,

where S := {(i, t) ∈ {1, . . . ,N}× {1, . . . , T} : δi,t = 1}. So, achieving an average bias of zero can be

expressed as

1

|S|
∑

(i,τ)∈S

(
δi,t+1 −φ(xpatient

i,t )
)
= 0. (3)
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In other words, we see from (3) that one achieves unbiased predictions of the system-level quantity

zt+1 if the patient-level predictions, φ(xpatient
i,t ), are unbiased estimates of δi,t+1 over all (i, t) ∈ S.

Importantly, in the dataset S, patient i contributes proportionately to their length of stay. Hence,

a bias can emerge whenever there is a mismatch between the latter dataset and the one used for

training the patient-level model φ.

Remark 1. Time-series approaches are not protected against bias issues either. For

example, minimizing
∑

t (zt+1 −Nt ×φ(xtime
t ))

2
in (2) is not equivalent to minimizing∑

t (zt+1/Nt −φ(xtime
t ))

2
. The latter objective corresponds to a weighted version of the former

and leads, in particular, to biased predictions of zt+1. Similarly, using loss functions that are less

sensitive to outliers (e.g., mean absolute error) or sub/over-sampling—common practices when pre-

dicting skewed outcomes—could result in biased predictions. However, when considering time-series

approaches, bias issues are more salient because the model is trained specifically to predict zt+1. In

the bottom-up approach, however, the patient-level model predicts an intermediate patient-level

outcome that can be of interest to the practitioner in itself (and not only when aggregated across

patients). Hence, bias in the downstream occupancy prediction task is more easily overlooked.

We now discuss the risk of bias of two specific patient-level outcomes identified in the literature

because of their clinical relevance, which are also used for predicting future occupancy. Additionally,

we propose solutions to mitigate these biases.

• Remaining Length of stay Length of stay (LoS) is widely considered as a proxy for quality

of care (see Thomas et al. 1997, Brasel et al. 2007, for discussions on its relevance). Accordingly,

hospitals are seeking models to predict patient LoS. For example, they can use EHR data to build a

patient-level prediction, ρ(xpatient
i ), of λi :=

∑
t δi,t. In turn, at any point in time t, the same model

can be used to estimate the remaining LoS for patient i, ρ(xpatient
i )−

∑
s≤t δi,s, and construct a

prediction of δi,t+1 of the form φ(xpatient
i,t ) = 1

(
ρ(xpatient

i )−
∑

s≤t δi,s > τ
)
, with τ = 1.

These models suffer from two main limitations. First, they estimate patient LoS upon arrival

and do not update these predictions based on information revealed throughout the stay (e.g., time

spent in the ED). Second, even when ρ(xpatient
i ) is an unbiased estimate of λi, ρ(x

patient
i )−

∑
s≤t δi,s

is an over-estimate of the remaining LoS, as we formally state in Lemma 2 in Appendix A.

To address these limitations, we can build models ϕ(xpatient
i,t ) that predict the remaining LoS,

λi −
∑

s≤t δi,s, instead. These models can be used to predict δi,t+1 via thresholding:

φ(xpatient
i,t ) = 1

(
ϕ(xpatient

i,t )> τ
)
.

In both cases, the resulting prediction on occupancy may not satisfy (3). While the threshold

value τ = 1 makes sense given the prediction task at hand (predicting remaining occupancy at
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time t+1), it does not guarantee unbiased occupancy predictions either. Instead, we propose two

simple and effective calibration procedures to ensure condition (3). First, we can calibrate τ so

as to achieve the same number of false positives as false negatives, hence satisfying (3) by design.

Alternatively, we can use τ = 1 followed by an affine transformation of the binary predictions,

β0 + β1 ×
∑

iφ(x
patient
i,t ), where (β0, β1) are computed by solving a simple ordinary least square

problem. By properties of ordinary least square regression, the resulting predictor is necessarily

unbiased (in-sample)—see Lemma 4 in Appendix A.2.

• Survival probabilities Individual survival probabilities P(δi,t+1 = 1|δi,t = 1) —or entire sur-

vival curves {P(δi,t+s = 1|δi,t = 1), s ≥ 1}— can also be used to monitor patients recovery and

anticipate discharges. A desirable property for classification models is called calibration: A binary

classification model is said to be calibrated when the predicted probabilities match the empirical

frequency of event occurrence (Guo et al. 2017). We now show that using well-calibrated predicted

probabilities is sufficient for satisfying (3). We denote ρ(xpatient
i,t ) the predicted probabilities (also

referred to as classification scores). By partitioning the summation in (3) based on the value p that

ρ can take, we have

1

T

∑
(i,t)∈S

(
δi,t+1 − ρ(xpatient

i,t )
)
=

1

T

∑
p

∑
(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
) (

δi,t+1 − ρ(xpatient
i,t )

)
=

1

T

∑
p

 ∑
(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
)
δi,t+1 − p

∑
(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
) ,

which equals zero if

p
∑

(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
)
=
∑

(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
)
δi,t+1,

for any value of p. This is precisely the definition of calibration for binary classification probabilities.

Furthermore, a common measure of calibration is the Expected Calibration Error (ECE; see Guo

et al. 2017, Naeini et al. 2015), which, in our context, is equal to

ECE(S) := 1

|S|
∑
p

∣∣∣∣∣∣
∑

(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
)
− p

∑
(i,t)∈S

1
(
ρ(xpatient

i,t ) = p
)∣∣∣∣∣∣ .

Observe that the set of observations S is involved in the definition of the ECE. We refer to Online

Supplement EC.1.5 for a more formal definition. With this definition, we can state the following

result:

Lemma 1. Assume that the patient-level predictions that are being aggregated, φ(xpatient
i,t ), are

the predicted probabilities of a binary classification model. Then, for a sufficiently fine-grained

discretization of the [0,1] interval, we can bound the bias of ẑbottom-upt+1 as follows∣∣∣∣∣ 1T
T∑

t=1

zt+1 − ẑbottom-upt+1

∣∣∣∣∣≤ |S|
T

ECE(S).



Kim et al.
Occupancy Prediction with Patient Data: Evaluating Time-Series, Patient-Level Aggregation, and Deep Set Models 11

In other words, improved calibration necessarily leads to lower bias in the downstream prediction.

Note that this result involves the ECE computed on the dataset S, where each patient appears

as many times as they stay in the hospital. This dataset might differ from the dataset used for

training the binary classification model if, for example, sub/over-sampling techniques are used.

Alternatively, for binary outcomes, one can convert a continuous score into a binary prediction

by using a user-specified threshold. In this case, as for the (remaining) LoS models, the condition

(3) requires the threshold to be chosen so as to achieve the same number of false positives and

false negatives. In practice, however, such thresholds are typically calibrated to achieve a target

sensitivity or specificity level, or to maximize a given accuracy metric like the F- or Youden’s

J-score (Etu et al. 2022).

3. Time-Series Models Enriched with Side Information

Predicting future remaining occupancy is a task well-suited for time-series models. There is a large

body of literature documenting the power of time-series models (see, e.g., Wargon et al. 2009, for a

survey), especially when combined with external side information. In this section, we demonstrate

the power of these approaches to our problem.

3.1. Data and models

We train linear (LR) and nonlinear (XGBoost and neural networks; XGB and NN respectively)

models on calendar features. The calendar features include current occupancy, hour, day of the

week, and month. To account for the cyclical nature of time, day of week, and month, we convert

these features into angles between 0 and 2π and represent them with their cosine and sine values,

leading to seven calendar features in total.

Many studies have investigated the value of external data in making hospital occupancy pre-

dictions. In their survey, Wargon et al. (2009) do not observe any significant improvement from

adding weather-related variables. On the other hand, recent analyses find that adding internet

search trends can improve model performance (Tideman et al. 2019, Trevino et al. 2022, Fan et al.

2022). Based on these findings, we did not include any meteorological data such as precipitation

or ambient temperature but considered search trends variables from Naver Trends3. Naver Trends

is the leading search engine in South Korea and gives us the relative search frequency of key query

terms, from January 9, 2016 to December 31, 2019. We used similar search terms as Trevino et al.

(2022), namely the name of our partner hospital, hospital, fever, cough, shortness of breath, numb-

ness, weakness, stomach pain, chest pain, back pain, fine dust, and yellow dust. For simplicity,

for predicting occupancy at a given time, we use search trends on the same day, leading to midly

optimistic estimates of the predictive power of search trends.

3 www.naver.com

www.naver.com


Kim et al.
12 Occupancy Prediction with Patient Data: Evaluating Time-Series, Patient-Level Aggregation, and Deep Set Models

Table 2 Out-of-sample results for predicting remaining occupancy using time-series methods.

Variables Calendar + Search Trends + Patient Summary
Model LR XGB NN LR XGB NN LR XGB NN

MAE (patients) 5.57 5.39 5.54 6.35 5.02 6.18 4.78 3.84 3.80
MAPE 16.5% 12.5% 18.7% 16.5% 18.1% 20.8% 14.2% 12.5% 12.4%
R2 0.686 0.618 0.695 0.612 0.739 0.616 0.764 0.848 0.851

Finally, we consider adding summary information about the patients currently in the ED, namely:

the average time spent by the patients currently in the ED and the number of severe patients

(KTAS level 1 or 2).

3.2. Empirical performance

We compare the performance of nine time-series approaches (three model types, three set of

explanatory variables) on the test set. As expected given the limited number of predictive features,

training these models can be done efficiently, within five minutes on a standard laptop. We mea-

sure predictive accuracy in terms of mean absolute error (MAE), mean absolute percentage error

(MAPE), and the proportion of variance explained by the model (R2).

The out-of-sample (i.e., on the test set) accuracy metrics for the time-series models are reported

in Table 2. Based on these results, we make the following observations: First, we observe that,

irrespective of the predictive variables used, using nonlinear models (especially, XGB) leads to a

significant increase in predictive accuracy (10–20% improvement depending on the metric). Second,

we observe little to no improvement from including search trends information, which is surprising

compared to the results from the literature such as Trevino et al. (2022). This difference could

be due to the fact that we are predicting remaining occupancy only (excluding new arrivals),

that we performed less feature engineering and selection as Trevino et al. (2022), or by the fact

that, unlike Google trends, Naver trends data are reported for the whole country and cannot be

restricted to a specific metropolitan area. Finally, we observe that including—even a limited number

of—information about patients currently in the ED leads to the most significant improvement.

For the linear regression model (LR) for example, it reduces the MAPE from 16.5% to 14.2%, a

2.3 percentage points or 13.9% improvement. Similarly, XGB (resp. NN) with summary patient

information achieves an 12.5% (resp. 12.4%) MAPE compared to 13.4% (resp. 18.7%) without.

All in all, XGB or NN on calendar variables and summary patient information achieve the best

performance, with an out-of-sample MAE of 3.80–3.84 patients and MAPE of 12.4–12.5%.

To further illustrate the importance of patient summary information, Figure 2 represents the

feature importance the variables in the NN model, where importance is measured by the average

information gain provided by each variable. While the most important feature is the current occu-

pancy (‘Current Occupancy’), we observe that the average time spent by all current ED patients

(‘Avg Time Spent in ED’) is of comparable predictive power as day of the week or month.
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Figure 2 Feature importance diagram for the time-series method using NN, calendar features and patient sum-

mary data.

4. Aggregation of Patient-Level Predictions

In this section, we construct patient level models to predict patient remaining length of stay (rLoS),

and aggregate them into an estimate for short-term ED occupancy. Our objectives are twofold:

First, to empirically document the misalignment between the two predictive tasks (patient-level

and system-level), which we described analytically in Section 2.4. Second, to demonstrate how

simple calibration steps can be added and deployed in practice to effectively correct it.

Since this issue of misalignment and the resulting bias in remaining occupancy estimates can

occur even in-sample (i.e., independently from considerations about over-fitting or nonstationarity),

we compute and report all metrics (calibration and accuracy) on the training set in this section.

4.1. Possible patient-level models

Given our downstream objective to predict ED occupancy in the next four hours, we can define

(and build models for) different patient-level outcomes to achieve this goal.

First, we can model the problem as a binary classification task: for every patient and every

timepoint (e.g., every hour), we predict whether their rLoS exceeds four hours (rLoS > 4h). Alter-

natively, we can view each patient’s rLoS as a continuous outcome and address this estimation

task as a regression problem, or estimate the entire rLoS distribution via a survival model. These

three approaches, classification/regression/survival analysis, correspond to the three broad families

of models considered in the literature for patient (remaining) LoS estimation, which we review

more extensively in Online Supplement EC.4. For the sake of brevity, we compare two modeling

approaches here, classification and regression. Note that each model applies to a patient at a given

point in time (every hour) and uses patient information (demographics and triage data described in
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Section 2.2), ED-level information (occupancy and time-related features), and the time the patient

has spent in the ED so far.

For classification models, we consider Random Forest (RF; Breiman 2001), gradient boosted trees

(XGB; Chen and Guestrin 2016), and neural networks (NN). We measure patient-level accuracy

using the area under the receiver operating characteristic curve (AUC) and calibration using the

expected calibration error (ECE). For the regression approach, we predict the rLoS for each patient

in the ED (in minutes) using a random forest regressor. Following practices from the literature, we

consider predicting both the rLoS and its logarithm. We use mean absolute error (MAE), mean

absolute percentage error (MAPE), and the proportion of variance explained by the model (R2)

as performance measures.

Compared with the time-series and the direct approaches, training bottom-up models is more

time-consuming because of the larger number of observations—number of unique (patient, time-

point) pairs vs. T , the number timepoints—and the more precise prediction task. On our data,

training either a classification or regression model and then aggregating their predictions to obtain

an estimate for occupancy over three years of data requires around one hour.

Although both approaches (classification/regression) aim at capturing the same underlying out-

come, they model a different part of the rLoS distribution. Conceptually, they group patients

according to how close they are to the end of their visit, yet use different summary statistics of the

rLoS distribution (one particular percentile and the mean, respectively). These differences in terms

of what it means for patients to be similar lead to differences in the resulting models and how

they should be interpreted. To illustrate these differences, Figure 3 displays the 10 most important

features (SHAP plot) accordingly to a classification XGB model (left panel) and a regression XGB

model (right panel). Although there are similarities in the most important variables (e.g., age, time

spent in the ED until now, hour) and how they impact the predicted outcome, we also observe

differences in the relative order of the features. Notably, the classification output seems to depend

more on the hour of the day and the day of the week than its regression counterpart.

4.2. Calibrating classification models

As elicited in Section 2.4 (Lemma 1), binary classification models that are well calibrated (in the

sense of calibrated probabilities) on the set of all combinations of (patient, timepoint) lead to unbi-

ased prediction of future occupancy. Accordingly, we audit whether the predicted scores obtained

by our raw classification models are calibrated. We apply a calibration correction step referred to

as isotonic regression (see Online Supplement EC.1.4 for a description of isotonic regression) and

evaluate its impact on patient-level classification and ED occupancy prediction accuracy.

To visualize the impact of isotonic regression, Figure 4 displays the confidence vs. accuracy

diagrams on the training set, for a NN classifier, before and after the isotonic regression step, and
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(a) Classification (b) Regression

Figure 3 Feature important plot (SHAP plot) for the XGBoost algorithm (XGB), for the classification (left

panel) and regression (right panel) approaches.

(a) Without isotonic regression calibration (b) With isotonic regression calibration

Figure 4 Calibration diagrams (on the training set) of the neural net classifier for predicting whether the remainig

LoS of a given patient will exceeds four hours.

illustrates the significant gain in calibration (and corresponding improvement in ECE). The top

part of Table 3 reports the AUC and ECE for the RF, XGB, and NN models, with and without

isotonic regression, on the training set. As expected, we observe that isotonic regression significantly

improves calibration, with no impact on the AUC (because scores are monotonously transformed).

We also observe that the level of calibration for the raw scores varies significantly across models

(0.94 for XGB vs. 12.2 for NN), emphasizing the need for data scientists to carefully audit the

calibration of their models after training and to introduce a calibration step when needed.

In addition, the bottom part of Table 3 reports the accuracy of each model, when the outputs

are aggregated across patients to estimate future occupancy. Our empirical results largely confirms
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Table 3 Accuracy metrics (on the training set) of different patient-level classification models (rLoS > 4 h) and

their corresponding accuracy on occupancy prediction.

Task
RF XGB NN

raw + isotonic raw + isotonic raw + isotonic

Patient-level
AUC 0.869 0.869 0.806 0.806 0.797 0.797

ECE 7.33 0.09 0.94 0.00 12.2 0.036

Occupancy

MAE 3.35 2.98 3.13 3.11 3.15 3.13

MAPE 11.9% 9.89% 10.7% 10.6% 11.0% 10.7%

R2 0.906 0.940 0.927 0.930 0.932 0.934

Bias 0.128** -0.054* -0.003 -0.002 0.401** 0.007

Notes: * = p-value < 0.05; ** = p-value < 10−3.

our theoretical findings: Non-calibrated predicted probabilities can result in biased occupancy

predictions, even in-sample. On the other hand, applying an isotonic regression correction step,

before the aggregation, not only improves the calibration of the predicted probabilities, but debiases

occupancy predictions. It also moderately improves downstream accuracy. On the training data,

the best performing model for the patient-level task is RF (AUC= 0.869 vs. 0.806 for XGB), which

translates into the most accurate estimate for occupancy (in terms of MAE, MAPE, and R2) only

when properly calibrated.

Although miscalibrated probabilities or biased predictions can occur (and be fixed) in-sample,

one should also be concerned about the out-of-sample behavior and, in particular, about the issue

of overfitting for the isotonic regression model. For the sake of completeness, we report the out-

of-sample analog of Table 3 in Appendix (Table B.1) and defer a more thorough discussion on

out-of-sample performance and non-stationarity issues to Section 6.

4.3. Calibrating regression models

Similarly, regression models for predicting patient rLoS need to be carefully aggregated. In the top

part of Table 4, we report the accuracy of two models (i.e., for predicting rLoS or its logarithm,

with RF), on the training set. Intuitively, errors of the regression model will translate into false

positive/negative rates of the binary prediction. As showed in Section 2.4, calibration in this setting

aims at equaling these two types of error in order to get unbiased estimates of occupancy. We

evaluate three aggregation strategies, as proposed in Section 2.4:

• (None) We convert individual predictions on remaining LoS (in minutes), ℓ̂i,t, into binary

predictions by testing whether ℓ̂i,t is greater than or equal to 240 minutes. We then sum these

binary predictions over all patients present in the ED:
∑

i 1(ℓ̂i,t ≥ 240).

• (LR correction) We apply the naive aggregation strategy described previously but instead

return β0 + β1 ×
∑

i 1(ℓ̂i,t ≥ 240), where (β0, β1) are the coefficients of a simple linear regression

model that predicts future occupancy based on the naive aggregate estimate.
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Table 4 Accuracy metrics (on the training set) of different patient-level random forest regression models and

their corresponding accuracy on occupancy prediction, with/without calibration strategies. For log(rLOS) models,

patient-level accuracy on rLOS (i.e., after taking the exponential of the predictions) is reported.

Outcome rLoS log(rLoS)
Calibration None LR correction Threshold None LR correction Threshold

P
at
ie
n
t MAE 73.0 - - 143 - -

MAPE 20.3% - - 23.1% - -

R2 0.98 - - 0.81 - -

O
cc
u
p
an

cy MAE 4.19 2.55 2.21 1.54 1.44 1.28

MAPE 13.1% 8.04% 6.95% 5.13% 4.83% 4.11%

R2 0.895 0.953 0.964 0.983 0.986 0.988

Bias 4.13** -0.0006 0.225** -0.902** -0.0006 0.169**

Notes: * = p-value < 0.05; ** = p-value < 10−3.

• (Threshold) We apply a threshold-based rule to individual predictions on rLoS and sum these

binary predictions together,
∑

i 1(ℓ̂i,t ≥ τ), but do not fix the threshold, τ , at 240 minutes. Instead,

we calibrate it so that the binary output makes as many false negative mistakes as false positive

ones when classifiying δi,t+1. We find that using a threshold of τ = 285 minutes for rLoS and τ = 225

minutes for log(rLoS) equalize the number of false negatives and false positives on the training set.

The respective accuracy of each aggregation strategy is reported in the bottom half of Table 4.

We observe that using a log-transformation leads to more accurate predictions (in terms of absolute

and relative errors) of the remaining occupancy, for all aggregation strategies. When no calibration

is used (None), we observe that the estimates of future occupancy with both models are significantly

biased: The rLoS model underestimates the actual occupancy by 4.1 patients on average, while

the log(rLoS) ones overestimates it by 0.9 patients. On this regard, both calibration strategies are

effective in reducing this bias, with the LR correction being more effective. We believe this is due to

the discrete nature of the threshold in the threshold strategy, which cannot always perfectly equalize

false negatives and positives. Second, we observe that these calibration steps also significantly

improve the accuracy obtained with each model, with the model for rLoS (unsurprisingly) benefiting

the most. This improvement, however, is not sufficient to outperform the predictions made from

the model for log(rLoS).

5. Direct Prediction using Deep Set Models

At any point in time, the ensemble of patients present in the ED can be considered as a set, where

each patient is characterized by patient-specific covariates, as well as attributes that are shared

across the cohort, such as the time of day and current occupancy. Deep set networks (Zaheer et al.



Kim et al.
18 Occupancy Prediction with Patient Data: Evaluating Time-Series, Patient-Level Aggregation, and Deep Set Models

2017) constitute a particular type of neural network architecture designed to be applied to set-

type inputs of potentially varying size. In this section, we describe how to implement the deep set

architecture in our context and analyze its performance.

5.1. Architecture and implementation

As described in Section 2.3, the prediction returned by a deep set architecture is of the form

ρ

(∑
i

ϕ(xpatient
i,t )

)
.

The function ϕ transforms each patient-information xpatient
i,t into a d-dimensional latent space. In

particular, this transformation is the same for all patients. Then, these latent representations are

summed together and another nonlinear function ρ is applied. In particular, under some assump-

tions, Zaheer et al. (2017) show that any function that supports input sets of varying cardinality

and that is invariant to the indexing of the elements in that set can be represented in that form.

Formally, we train ϕ and ρ so as to predict zt+1 based on {xpatient
i,t , i = 1, . . . I}, where I is an

upper-bound on the total number of patients that can be present in the ED at any point in time

(maxtNt ≤ I) and xpatient
i,t ∈Rp is the vector of patient covariates. To address the issue of having a

different number of patients at different point in time, we set xpatient
i,t = 0 for i=Nt +1, . . . , I.

In terms of architecture, we consider a function ϕ represented as a neural network with one hidden

layer with 64 units and one output layer with d units, hence comprised of (p+1)×64+(64+1)×d

tunable parameters. The function ρ takes as input
∑

xϕ(x)∈Rd into a hidden layer of size d and

one output layer of size 1, leading to (d+1)×d+(d+1) parameters. We acknowledge that further

refinement of the network architecture could lead to increased performance. In our experiments, we

restricted ourselves this structure with 64 hidden nodes to avoid compression in the first layer (as

p= 18≤ 64) since wider networks tend to exhibit more feature learning (Yang and Hu 2020). We

denote these architectures as p–64–d and d–d–1, respectively. In the experiments of the following

section, we focus on an architecture with d= 64, which results in (18 + 1)× 64 + (64 + 1)× 64 =

1,216+4,160 = 5,376 parameters for ϕ and (64+1)× 64+ (64+1) = 4,225 parameters for ρ. We

also investigate the impact of the latent space dimension d and compare with architectures that

mimic the bottom-up approach from Section 4. We train all models for 1,000 epochs with early

stopping based on MAE on a holdout validation set consisting of 15% of the 2016-2018 training

data.

5.2. Numerical performance

Table 5 reports the out-of-sample performance (in-sample performance is reported in Table B.3)

of a deep set estimator with the architecture ϕ : p–64–d and ρ : d–d–1 for d= 64.
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Table 5 Out-of-sample results for predicting remaining occupancy using direct methods neural network with

latent dimension of 1 and 64.

Latent dimension d= 64 d= 1 d= 1
ϕ p–64–64 p–64–64–1 p–64–64–64–1
ρ 64–64–1 1–1 1–1

# Parameters 9,601 5,443 9,603
# Layers 4 4 5

MAE (beds) 3.87 3.91 4.05
MAPE 48.2% 49.0% 49.2%
R2 0.841 0.839 0.823

As previously observed, the bottom-up approach from Section 4 can be seen as a special case

of deep set estimators with additional structure. In particular, the bottom-up approach leads to

architectures with d = 1 (ϕ(x) corresponds a patient-level probability) and ρ is the identity. In

addition, in a bottom-up approach, ϕ and ρ are trained sequentially, with ϕ learned to solve a

patient-level task (i.e., predict the patient-level labels δi,t+1), while, in the deep set approach, they

are learned simultaneously for predicting the system-level quantity zt+1. To illustrate the difference

between the bottom-up and the direct approaches, we also consider two architectures that mimic

the bottom-up ones as closely as possible, i.e., with d= 1 and ρ : 1–1. To allow for a fair comparison

with the architecture with d= 64, we consider both ϕ : p–64–64–1 (same total number of layers)

and ϕ : p–64–64–64–1 (comparable number of parameters).

We observe in Table 5 that our architecture with d> 1 improves out-of-sample accuracy compared

with the two architectures with d= 1, highlighting the benefit from a richer patient embedding.

To better appreciate the richness of the information captured by ϕ(x), Figure 5 represents the

distribution in the number of nonzero coordinates of ϕ(x) (Figure 5(a)) and of the input to ρ,∑
xϕ(x) (Figure 5(b)). We observe that most patients are described using about 1–5 latent features

(note that the embedding of ϕ(0) also contributes to the proportion of patients with an embedding

of size 3), leading to approximately 10–30 variables to describe the state of the ED and that are

passed to ρ. This observation does not imply that the same 10–30 coordinates of ϕ(x) are passed

to ρ. A more fine-grained analysis (Figure B.2) shows that around 45 coordinates of the embedding

are ever used. To confirm these findings, we also conduct supplementary experiments where we

observe a noticeable gain in accuracy for d≥ 8 (see Figure B.3).

One can legitimately wonder to what extent the embedding ϕ learned by the deep set estimator

is specific to the task of occupancy prediction or whether it can be used as a generic embedding

of patient state. To do so, we re-use the three embeddings from Table 5 for the patient-level

classification task of predicting δi,t+1. Specifically, when d= 64, we train a simple logistic regression

model to predict δi,t+1 as a function of ϕ(x), and when d= 1, we use ϕ(x) as a classification score
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(a) Sparsity of ϕ(x) (b) Sparsity of
∑

xϕ(x)

Figure 5 Empirical distribution (histogram) of the number of nonzero coordinates of ϕ(x) (left panel) and∑
xϕ(x) (right panel). Results are obtained by sampling 1,000 random time points t.

Table 6 AUC (in- and out-of-sample) obtained on the classification task of predicting δi,t+1 using the

embedding ϕ obtained from the deep set estimator for remaining occupancy.

Latent dimension d= 64 d= 1 d= 1
ϕ p–64–64 p–64–64–1 p–64–64–64–1

In-Sample 0.697 0.752 0.753
Out-of-Sample 0.633 0.687 0.686

directly. Table 6 reports the AUC for each of these approaches. While the performance levels are

acceptable (0.70–0.75 in-sample, 0.63–0.69 out-of-sample), there are significantly lower than that of

dedicated classification models (Section 4.2). Unsurprisingly, one-dimensional embeddings perform

best, suggesting that, when constrained to d= 1, ϕ tries to recover δi,t+1. Nonetheless, models that

have access to δi,t+1 explicitly during training demonstrate a significant edge.

Overall, the predictive performance of the deep set approach reported in Table 5 is on par

with that of bottom-up models from Section 4.2 (we defer a formal comparison of out-of-sample

performance to Section 6.1), except for a relatively high MAPE. Since MAPE measures relative

errors, it is sensitive to errors made when the true value (i.e., future occupancy) is small. Indeed,

we observe in Figure B.5 that the deep set model performs poorly in some (rare) cases with low

future occupancy (≤ 20 beds), resulting in a large impact on the overall MAPE.

6. Comparison of Predictive Accuracy in Non-Stationary Environment

We can now compare the performance of time-series models with that of bottom-up and direct

approaches. To be practically relevant, we evaluate and compare their performance out-of-sample,

on data from 2019, in Section 6.1.

However, as suggested by Figure 1(b), our environment experiences distributional shifts over time

(like many real-world environments). Distribution shift, which generally refers to changes in data

distribution between training and testing phases, is a serious hurdle in the adoption of machine
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learning systems in healthcare (Challen et al. 2019, Riley 2019). For example, Nestor et al. (2019)

observe a 0.3 (resp. 0.1) drop in AUC for mortality (resp. length of stay) prediction due to changes

in the record-keeping practices at a hospital over time. We discuss how such shifts can be detected

and accounted for in Section 6.2.

6.1. Comparison of out-of-sample performance

To capture the inherent nonstationarity of our prediction task and provide a realistic comparison,

we mimic a setting where a model has been trained on past data (2016-2018) and is being deployed

in production in 2019. For each approach, we restrict our attention to the best performing models, as

well as neural network models to allow for a better apples-to-apples comparison across approaches4.

All in all, we consider two time-series models (XGB and NN) with calendar variables and patient

summary information; two classification models for patient rLoS (XGB and NN), calibrated with

isotonic regression and then aggregated5; one direct model consisting of a deep set model with a

latent space of dimension 64.

Table 7 reports the accuracy of each model on data from 2019. First, we should acknowledge the

remarkable performance of the time-series models, which, despite the simplicity of the variables

they use, explain 85% of the variance in remaining occupancy and are the two best performing

methods in terms of MAE and MAPE. We should emphasize that this performance is largely due to

the presence of summary patient information, in particular the average LoS of current ED patients.

Second, the performance of the bottom-up and the direct approach are comparable, with an edge

for bottom-up approaches, especially in terms of MAPE.

Regarding the bottom-up approaches, we observe that calibration of the intermediate proba-

bilities is beneficial for downstream occupancy prediction, although the benefits are less acute

out-of-sample than in-sample (Table 4). Despite our best efforts in Section 4, the resulting predic-

tions on remaining occupancy remain biased out-of-sample. This is due to the fact that the isotonic

regression model is fitted on the training data. As any model learned from data, it can suffer from

over-fitting or become less relevant with time when applied in a nonstationary environment, as we

discuss in the following section.

6.2. Detecting and mitigating distribution shifts

Figure 1(b) indicates a shift in the distribution of our outcome of interest (here, the probability

of a patient currently in the ED staying at least four hours). This distribution shift could be due

4 For the time-series and bottom-up approaches, we consider a NN architecture with number of parameters comparable
with the NN for the direct approach, namely p–64–64–64–1.

5 We report the performance of the bottom-up approach with the two RF models, with a classification and a regression
patient-level task respectively, in Table B.2 in Appendix.
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Table 7 Out-of-sample accuracy for predicting remaining occupancy with a time-series approach (using

calendar and patient summary features), a bottom-up approach (with an intermediate patient-level classification

task), and a direct approach (with a latent space of size d= 64). Models are trained on 2016-2018 data and

evaluated on data from 2019.

Approach Time-Series
Bottom-Up

DirectRaw +Calibration
Model XGB NN XGB NN XGB NN

MAE (patients) 3.84 3.80 3.82 4.25 3.85 4.09 3.87
MAPE 12.5% 12.4% 12.7% 13.9% 12.7% 13.3% 48.2%
R2 0.848 0.851 0.847 0.804 0.850 0.816 0.841
Bias +0.62 +0.77 +2.05 +2.19 +2.02 +1.26 +0.78

to nonstationarity in the patient population (covariate shifts) or in the relationship between the

patient covariates and their (remaining) LoS. In the presence of nonstationarity, the performance

of any predictive models is likely to deteriorate over time. In this section, we briefly present how

to properly detect distribution shifts, especially when using a bottom-up approach, and evaluate

the benefits of simple retraining strategies.

A standard approach to detect covariate shift is to compare the distribution the covariates used by

the models, on the training and test sets. For the patient-level models, many explanatory variables

are patient-specific and do not change over time, such as demographic information (age, sex) or

vital signs at triage. Consequently, we can test whether their mean (t-test) or their distribution

(Kolmogorov-Smirnov test) is the same for patients in the training set as for patients in the test

set. However, in our case, this approach is flawed. Indeed, as elicited in Section 2.4, when used to

predict future occupancy, the patient-level models will be applied to a dataset where each patient

contributes proportionately to their LoS (S in the notations of Section 2.3). Hence, the statistical

tests need to be conducted on a dataset where patients are not equally weighted but weighted

proportionately to their LoS.

This distinction can completely overturn the conclusion of the statistical tests. Theoretically, we

show (Lemma EC.1 in Online Supplement EC.2) that a t-test can identify a statistically significant

change in mean when observations are equally weighted but no significant change when weighted

according to LoS, and vice-versa. Empirically, we conduct t- and KS-tests to detect distribution

change in our patient-level variables. For two patient-level variables, namely temperature at triage

and sex indicator, we cannot reject the null hypothesis for at least one of the tests when patients

are weighted equally (as is mostly done for patient-level information). However, when weighting

patients by their LoS (which, again, is the relevant weighting for our occupancy prediction task),

we detect statistically significant changes in the distributions of both variables, as reported in

Table 8. For the remaining six variables, we observe a significant distribution change (p-value
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Table 8 Results from t- and Kolomogorov-Smirnov (KS) tests to detect nonstationarity in the distribution of

Temperature and Sex F between the training and testing data, depending how the weights that are applied to

each patient.

Variable Temperature Female
Weight per patient Equal LoS Equal LoS

Average on 2016-2018 37.04 37.18 0.51 0.47
Average on 2019 37.04 37.13 0.51 0.49
t-test p-value 1.00 < 10−4 0.71 < 10−4

KS-test p-value < 10−4 < 10−4 1.00 < 10−4

≤ 5 ·10−3) irrespective of the weight applied to each observation (see Tables EC.3(a)–(b) in Online

Supplement).

To mitigate the impact of nonstationarity on the performance of the model deployed in produc-

tion, retraining the models using the most recent data can be an effective strategy (Gama et al.

2014). We now adapt this solution to our three approaches. For the time-series approach, we retrain

the models every month of 2019, including the past month data in the training data set. While

viable for simple models that require a limited number of observations and variables, retraining

can be prohibitively time-consuming for more sophisticated patient-level models like the ones we

constructed in Section 4. Instead, we propose to apply this retraining strategy to the calibration

step only. Specifically, we use a patient-level model trained using 2016-2018 data and we retrain

the calibration step of the model every month, using the data from the past month. Our proposal

echoes the observations made by Davis et al. (2017)—although in a different healthcare context,

namely risk of hospital-acquired acute kidney injury—that classification models sometimes decal-

ibrate over time, without observable impact on pure accuracy. For the direct approach, we adopt

a similar strategy in the sense that we do not retrain the embedding ϕ but only the aggregation

function ρ. Instead of a complete retraining from scratch, however, we adopt a fine-tuning strategy,

inspired by recent evidence from the literature (e.g., Lee et al. 2022), where we use data from the

past month to fine-tune the values parameters of the current model.

Table 9 reports the accuracy of each approach with monthly retraining, on data from 2019. First,

we observe that a rolling calibration strategy is effective at mitigating the impact of nonstationarity

on patient-level models, as it noticeably improves their accuracy (around -0.4 reduction in MAE for

bottom-up approaches, -0.15 for the direct approach) without requiring to retrain the entire model.

Second, we observe that the bottom-up and direct approaches benefit the most from retraining

compared with the time-series model. We suspect the relative robustness of the time-series model

could be explained by its auto-regressive nature and the fact that the predictions naturally adapts

to past realizations. Finally, we observe that time-series models are no longer the most accurate

methods once retraining strategies are considered. Deep set estimators with a monthly fine-tuned ρ
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Table 9 Out-of-sample accuracy for predicting remaining occupancy for the same models as Table 7 with a

retraining strategy. Models are trained on 2016–2018 data and evaluated on data from 2019, with monthly

retraining.

Approach Time-Series Bottom-Up Direct
Model XGB NN XGB NN NN

MAE 3.80 3.79 3.48 3.66 3.72
MAPE 12.4% 12.4% 11.3% 11.9% 46.9%
R2 0.850 0.855 0.862 0.840 0.854
Bias +0.56 +0.84 +0.07 –0.08 +0.02

are slightly more accurate in terms of MAE (-0.07). Overall, bottom-up approaches with predicted

patient-level probabilities of staying four additional hours lead to the best performance. With

XGB as a patient-level classifier, it achieves an MAE, MAPE, and R2 of 3.48, 11.3%, and 0.862

respectively. In particular, it outperforms the time-series and direct approach by 0.25–0.3 in MAE.

7. Extensions to Multiple Prediction Horizons and Emergency
Departments

Our main analysis applies to the task of predicting ED occupancy in 4 hours at our partner

hospital. In this section, we evaluate the robustness of our findings across different time horizons

and healthcare settings. In Section 7.1, on the same hospital data as our main analysis, we evaluate

the impact of varying the prediction horizon from 1 to 12 hours. In Section 7.2, we replicate our

analysis to 10 Korean hospitals and verify our findings on EDs of varying sizes and characteristics.

7.1. Performance Across Multiple Prediction Horizons

Instead of focusing on 4-hour predictions only, we now evaluate the performance of our three

modeling approaches—time-series, bottom-up, and direct—for prediction horizons ranging from 1

hour to 12 hours. For each approach, we use neural networks models and replicate the out-of-sample

analysis of Section 6.2. In particular, accuracy metrics are reported for one year of implementation

with monthly retraining/recalibration.

Figure 6 shows the trend in MAE for each modeling approach (with a NN model), as the

prediction horizon increases. A more comprehensive comparison of additional performance metrics

is provided in Online Supplement EC.5.1. Overall, we observe that our findings are robust to the

prediction horizon: The bottom-up and the direct (deep set) approaches achieve the lowest MAE

consistently across all prediction horizons. The time-series approach, while performing adequately

at shorter prediction horizons, has the highest MAE at all prediction horizons. Overall, we observe

that the relative benefit of using a bottom-up (resp. direct) approach over a time-series model

increases with the prediction horizon, leading to a decrease in MAE of 3.3% (resp. 0.8%) for 1-hour

ahead predictions to 11.8% (resp. 19.1%) for 12-hour ahead predictions. Between the bottom-up
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Figure 6 Out-of-sample MAE of the three modeling approaches as a function of the prediction horizon.

and direct approaches, we observe that the direct is superior in terms of MAE for longer prediction

horizons. However, as already observed in Sections 5.2 and 6.2, direct models can perform poorly

on hours with very low occupancy, leading to poor performance in terms of MAPE (Figure EC.1).

7.2. Generalization to Multiple Emergency Departments

We extend our analysis to multiple medical centers. For this analysis, we use data from the National

Emergency Department Information System (NEDIS) in South Korea, a nationwide, real-time

database that aggregates ED data from over 400 hospitals across the country (Yoo et al. 2023). The

database includes detailed information on patient demographics, triage scores, chief complaints,

diagnoses, treatment procedures, ED arrival and discharge times, disposition outcomes, and mode

of arrival, covering the 2018–2022 period. Unfortunately, the database does not include features

that vary along the visit.

We focus our analysis on EDs located in the Seoul metropolitan area, which includes a total

of 50 EDs. Seoul contains a high concentration of high-volume, tertiary, and secondary hospitals,

making it an ideal setting to evaluate the performance of occupancy prediction models in a crowded

urban environment. Among these, we select the 10 EDs with the highest number of visits in 2022,

as these sites are often overcrowded and thus are likely to benefit the most from improved occu-

pancy prediction, but excluding our partner hospital, the original study site, to ensure independent

external validation of our findings.

Table 10 presents some summary statistics for these EDs. In our data, we observe that larger EDs

tend to have longer ED visits, a trend that is well documented in the literature. This is commonly

attributed to higher patient volumes, greater case complexity (see Table EC.2 for average LOS by

KTAS levels), and more frequent crowding and boarding in larger or academic centers (Karaca
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Table 10 Summary statistics for each of the 10 EDs in our database (sorted by hourly occupancy).

Daily Avg Avg Hourly Avg LOS % LOS KTAS (%)
ED Visits Occupancy (min) > 4 hrs 1 2 3 4 5

1 108.14 9.34 116.90 11.63% 0.81 3.75 28.07 35.94 31.45
2 117.54 11.58 155.47 16.98% 0.91 6.80 51.98 31.69 8.62
3 127.61 15.73 177.51 20.72% 0.88 3.69 32.83 54.99 7.61
4 129.77 17.05 189.42 23.67% 0.60 4.31 35.82 33.95 25.30
5 130.98 17.08 189.22 25.48% 0.76 7.55 50.81 33.40 7.48
6 144.19 26.76 269.08 36.44% 0.66 3.77 53.85 25.83 15.88
7 161.18 39.78 357.50 36.28% 0.85 5.36 46.42 40.48 6.85
8 168.42 45.55 391.12 49.08% 2.00 10.27 50.48 30.74 6.51
9 230.76 63.78 399.62 48.51% 1.40 8.11 27.82 51.90 10.77
10 288.31 83.43 417.30 49.71% 2.02 8.75 56.33 29.39 3.52

Average 153.66 33.01 302.66 36.24% 1.24 6.74 44.14 37.10 10.78

et al. 2012). Teaching hospitals, which are typically larger, also tend to have longer lengths of stay

due to the involvement of trainees and higher rates of diagnostic testing and consultations (Karaca

et al. 2012, Riguzzi et al. 2014). Although we restricted our attention to the top-10 EDs in terms

of 2022 annual volume, we observe that the hourly occupancy ranges from 10 to 80 patients on

average, providing a good coverage of ED sizes. The models were trained using data from 2018,

2019, and 2021, while data from 2022 was reserved for testing. Compared to our main analysis in

Section 6, the data for this extension covers both pre- and post-COVID periods. Neural networks

were again used for all hospitals and approaches.

Figure 7 shows the out-of-sample MAE for the 10 EDs and a 4-hour prediction horizon. Addi-

tional performance metrics, including MAPE, R2, and bias, are reported in Figure EC.2. We observe

that the time-series approach shows the highest MAE, across all 10 EDs. In comparison, the bottom-

up or direct approaches do provide a gain in accuracy. However, the benefit appears marginal for

the smaller EDs (0–10% reduction in MAE for ED1–5) and much more acute for the larger ones

(15–35% MAE reduction for ED6–9). Comparing bottom-up and direct, both approaches perform

similarly on small EDs but their performance diverges on larger ones.

Our results indicate that the time-series approach, while commonly used, appears to be less

suited for larger EDs. The bottom-up and direct approaches yield comparable performance, with no

clear winner. These findings highlight that model performance varies across institutions, suggesting

the need for customized model calibration rather than a one-size-fits-all approach.

8. Conclusion

With the increasing availability of patient-level data and the commoditization of data analytics

tools, hospitals are eager to build prediction models that leverage the rich patient-level data they
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Figure 7 Out-of-sample MAE for 4-hour occupancy prediction, across our three forecasting approaches and our

10 different EDs.

collect. Our study presents and compares models that can benefit from patient-level information

to predict ED occupancy.

First, we investigate the relevance of time-series approaches. We find that including sum-

mary information about patients currently in the ED is extremely valuable for future occupancy

prediction—much more than external data such as search trends, in our case study— leading to

a 15–30% reduction in MAE. Among other advantages, these approaches are simple (around 10

predictive variables) and relatively robust to distribution shifts compared with other models.

Second, we consider bottom-up pipelines that first predict a patient-level outcome (such as the

probability of staying at least four hours) and then aggregate these predictions across all patients

present in the ED. Because they provide two levels of prediction, at a patient and ED level, these

approaches are more interpretable from a clinical perspective. Eventually, we find that they lead to

the most accurate occupancy predictions, improving MAE by 0.3 patients (or 35%) compared to

time-series models, at the expense of a more expensive training effort. To achieve these accuracy

gains, however, a key finding (analytical and empirical) from our analysis is that the patient-level

predictions need to be carefully calibrated, and re-calibrated over time to achieve those gains.

Finally, deep sets are a promising family of models that can predict occupancy directly from the

concatenation of all patient-level information available from the ED. In our case study, they achieve

an intermediate performance between time-series and bottom-up approach, provided that they are
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dynamically fine-tuned over time (every month in our experiments). However, we observe that

these models perform poorly on low-volume days (leading to very high overall MAPE), suggesting

they might not be well suited for smaller institutions.

Overall, our findings illustrate the benefits of using patient-level data for predicting ED occu-

pancy. However, it also underscores the importance of attention to model selection, calibration, and

fine-tuning processes. We hope this study offers a practical guide for healthcare analytics teams

aiming to leverage patient-level data for enhancing operational efficiency of healthcare systems.

Beyond healthcare, in many customer service system (e.g., call centers or e-commerce websites),

data is now available at a granular level (e.g, at an interaction or transaction level) and enables

predictions of individual outcomes such as probability of completion or purchase. Yet, for some

strategic or tactical decisions, predictions on aggregate quantities (e.g., number of available opera-

tors or total demand) might be more relevant to managers. In this context, we believe our analysis

and insights could interest researchers and practitioners in service systems more broadly, about

the opportunities and challenges posed by granular-level information for system-level forecasting.
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Appendix A: Bias when Reusing Length of Stay Predictions for Remaining Length
of Stay Estimation

We use the notations from Section 2.3. For each patient i, their length of stay (LoS) is denoted λi and defined

as λi :=
∑

t
δi,t. For every time t such that the patient is in the ED at time t (δi,t = 1) the remaining LoS for

this patient is ri := λi −
∑
s≤t

δi,s. In this section, we show that, under mild conditions, a patient-level model

designed to predict LoS leads to systematically biased estimates of the remaining LoS. Formally, we prove

the following:

Lemma 2. Consider a patient-level model for length of stay λ̂i :=φ(xpatient
i ) satisfying∑

i

λ̂i

(
λi − λ̂i

)
= 0 (orthogonal residuals).

Then, predicting r̂i = λ̂i−
∑

s≤t δi,s for the remaining lenght of stay of patient i at time t is positively biased:∑
(i,t):δi,t=1

(ri,t − r̂i,t) =
∑
i

(λi − λ̂i)
2 ≥ 0.

Proof The proof follows from simple algebraic manipulations. Indeed,∑
(i,t):δi,t=1

(ri,t − r̂i,t) =
∑

(i,t):δi,t=1

(
λi − λ̂i

)
=
∑
i

λi

(
λi − λ̂i

)
=
∑
i

(
λi − λ̂i

)2
+
∑
i

λ̂i

(
λi − λ̂i

)
,

and the last term is zero, by assumption. □

The assumption in Lemma 2 requires the vector of predictions (λ̂i)i=1,...,N to be orthogonal to the vector of

residuals (λi − λ̂i)i=1,...,N . In particular, it follows naturally from the interpretation of ordinary least square

as a projection and is satisfied by linear regression (see discussion in Appendix A.1). In addition, we see

from Lemma 2 that the prediction bias is strictly positive as long as the length of stay model is not perfectly

accurate, i.e., always in practice.

Intuitively, our analytical model highlights that bias can emerge due to the mismatch between the definition

of an ‘observation’ between the two prediction tasks. For predicting LoS, each patient contributes equally,

while, for predicting remaining LoS, each patient contributes proportionately to their length of stay—a

discrepancy which is reminiscent of the inspection paradox in applied probability (Stein and Dattero 1985).

A.1. Orthogonal residual assumption

In this section, we elicit some generic conditions for the assumptions of Lemma 2, namely the orthogonal

residuals assumption, to be satisfied.

We say that a family F of machine learning models is a cone if ∀f ∈F and ∀α> 0 we have that αf ∈F .

For example, the class of linear models (i.e., of the form x 7→ β⊤x for some vector β) or the class of linear

models in a nonlinear feature space (i.e., of the form x 7→β⊤ϕ(x)) are cones.

Lemma 3. Consider a length of stay prediction model, f̂(x), obtained by solving an ordinary least square

problem

min
f∈F

1

2

N∑
i=1

(λi − f(xi))
2
,

where the model class F is a cone. Then, the predictions λ̂i := f̂(xi) satisfy

N∑
i=1

(λi − λ̂i)λ̂i = 0.
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Proof We denote a :=
∑N

i=1(λi − λ̂i)λ̂i and show that a = 0 by contradiction. If a ̸= 0, consider a new

model fη = (1+ η)f for some small η ∈ (−1,1). We have fη ∈F since F is in a cone. Its error is given by

N∑
i=1

(λi − fη(xi))
2
=

N∑
i=1

(
λi − λ̂i − ηλ̂i

)2
=

N∑
i=1

(λi − λ̂i)
2 − 2η

N∑
i=1

(λi − λ̂i)λ̂i︸ ︷︷ ︸
a

+η2

N∑
i=1

λ̂2
i .

Hence, if a ̸= 0, taking η→ 0 with aη > 0 leads to a model fη with
∑

i
(λi − fη(xi))

2
<
∑

i
(λi − λ̂i)

2, which

violates the optimality of f̂ . □

A.2. Unbiased predictions

In this section, we show that regression models trained with the sum of squared errors as the loss function

achieve zero in-sample bias, for a wide class of predictive models.

Lemma 4. Consider a length of stay prediction model, f̂(x), obtained by solving an ordinary least square

problem

min
f∈F

1

2

N∑
i=1

(λi − f(xi))
2
,

where the model class F satisfies the following condition: ∀f ∈F , ∀c∈R, f + c∈F .

Then, the predictions f̂(xi) are unbiased, i.e.,

N∑
i=1

(
λi − f̂(xi)

)
= 0.

Proof Denote b the value of the left-hand side. And consider g := f + b/N ∈F .

N∑
i=1

(λi − g(xi))
2
=

N∑
i=1

(
λi − f̂(xi)− b/N

)2
=

N∑
i=1

(
λi − f̂(xi)

)2
−
(

b

N

)2

.

So, if b ̸= 0, g achieves a strictly lower squared error than f̂ , hence contradicting its optimality. □

Appendix B: Additional Numerical Results

B.1. Aggregation of Patient-Level Predictions

In this section, we provide additional results on the accuracy of the patient-level predictive models developed

in Section 4.1.

Figure 4 displays the calibration plots, on the training set, of the NN classifier, before and after the

isotonic regression correction. Figure B.1 displays the same calibration diagrams (without any calibration

and with the calibration fitted from the training set), on the testing set instead. In line with our discussion

on nonstationarity and decalibration in Section 6, we observe that the calibration behavior of the raw scores

differs on the test set compared to the training set. For example, we observe that the model with isotonic

regression has (on the testing set) more mass at the higher levels of confidence and is generally over-confident

on the test set compared to the base model. In particular, while effective on the training set, the isotonic

regression fitted from the training data is not effective on the test set (and the resulting ECE score on the

test set). This observation further motivates the need for a continuous (or rolling) calibration of the model

across time. These observations are also valid for the XGB and RF models (calibration diagrams omitted).
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(a) Without isotonic regression calibration (b) With isotonic regression calibration

Figure B.1 Calibration diagrams (on the testing set) of the NN classifier for predicting whether the remainig

LoS of a given patient will exceeds four hours

Since Section 4 focuses on the bottom-up approach and the bias emerging (in-sample) from the misalign-

ment between the patient-level and the system-level predictions, it reports accuracy metrics on the training

set only and not out-of-sample performance (which is the focus of Section 6). For completeness, we report

the accuracy of the three classification models (RF, XGB, NN), with and without isotonic regression, on the

test sets, in Table B.1. Observe that the RF models had higher AUC scores than the XGB models on the

training set (Table 3), but have slightly lower AUC on the test set. The ECE of the calibrated XGB model

is lower (i.e., better) than the calibrated RF model on both the training and test sets.

Section 6 compares the out-of-sample performance of models from the time-series, bottom-up, and direct

approaches respectively. In terms of bottom-up models, we only report the performance of classification

models, with XGB and NN as classifiers. For the sake of completeness, we report the performance of one

regression model (log(rLoS) predicted with RF) and the third classification model (RF) in Table B.2.

Table B.1 Accuracy metrics (on the test set) of different patient-level classification models (rLoS > 4 h) and

their corresponding accuracy on occupancy prediction.

Task
RF XGB NN

raw + isotonic raw + isotonic raw + isotonic

Patient-level
AUC 0.734 0.734 0.747 0.747 0.724 0.724

ECE 0.72 6.23 2.95 3.91 15.9 4.40

Occupancy

MAE 3.92 3.93 3.82 3.85 4.25 4.09

MAPE 13.3% 12.5% 12.7% 12.7% 13.9 % 13.3%

R2 0.813 0.855 0.847 0.850 0.804 0.816

Bias 1.55 0.485 2.05 2.02 2.19 1.26
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Table B.2 Out-of-sample accuracy for predicting remaining occupancy with two bottom-up models: one

regression model for log(rLoS)and one classification model. The regression model is calibrated using a simple

linear regression step after aggregation and the classification model is calibrated with isotonic regression. We

report performance without and with monthly recalibration. Models are trained on 2016-2018 data and evaluated

on data from 2019.

Approach Bottom-Up
Patient-level outcome log(rLoS)–regression rLoS > 4h–classification
Model RF RF
Recalibration ✓ ✓

MAE 5.37 4.46 3.93 3.73
MAPE 16.9% 14.7% 12.5% 12.0%
R2 0.785 0.797 0.855 0.828
Bias -1.02 -0.04 0.49 -0.09

B.2. Direct approach and deep set estimators

Table B.3 reports the in-sample performance of a deep set estimator with the architecture ϕ : p–64–d and

ρ : d–d–1 for d= 64, as well as two comparable architectures that mimic bottom-up models (hence, with a

latent dimension of 1).

Figure 5(a) displays the distribution of the number of nonzero coordinates in ϕ(x). To complement these

results, Figure B.2 reports, for each of the 64 coordinates of the embedding, how often it contains a nonzero

value. We observe that four dimensions are very often nonzero, which correspond to the four nonzero coordi-

nates of ϕ(0). We also observe that some of the dimensions are essentially useless and never have a nonzero

value. This suggests that a lower dimensional embedding could have been used and achieve similar perfor-

mance.

Accordingly, we evaluate the performance of our architecture (ϕ : p–64–d and ρ : d–d–1) for various values

of d in Figure B.3. We also experiment with the number of hidden nodes in the first layer of ϕ (64, 32,

8). We observe that increasing the size of the latent space (hence, increasing the nonlinearity of the model)

generally improves performance with a sharp gain as soon as d≥ 8. For consistency and simplicity, we keep

d= 64 in our analysis but we note that the performance is fairly constant for values of d between 8 and 64.

Table B.3 In-sample results for predicting remaining occupancy using direct methods neural network with

latent dimension of 1 and 64

Latent dimension d= 64 d= 1 d= 1
ϕ p–64–64 p–64–64–1 p–64–64–64–1
ρ 64–64–1 1–1 1–1

# Parameters 9,601 5,443 9,603
# Layers 4 4 5

MAE (patients) 2.78 2.79 2.57
MAPE 62.4% 63.2% 63.3%
R2 0.949 0.949 0.956
Training Time (min) 6.24 5.13 6.14
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Figure B.2 Count of the number of times each dimension of ϕ(x) is nonzero. Results are obtained by sampling

1,000 random time points t.

(a) k= 64 (b) k= 32 (c) k= 8

Figure B.3 In- and out-of-sample MAE for deep set estimators with architectures of the form ϕ : p–k–d and

ρ : d–d–1

We believe this behavior is due to the fact that ρ is also nonlinear, so nonlinearities in ρ can make up lower

dimensional embedding.

To confirm this intuition, Figure B.4 represents the same metrics for varying d, yet with a highly nonlinear

ρ, i.e., with a hidden layer of size 64 for all values of d (ρ : d–64–1). We observe a significantly different behavior

with respect to d, with all of the previously observed variation absorbed by the additional complexity of ρ.

Figure B.5 represents the distribution of the relative predicted occupancy ẑt+1/zt+1 as a function of the

true remaining occupancy zt+1. Overall, we observe that the distribution is concentrated around the value 1

(perfect prediction) but that it is more dispersed as the value of zt+1 decreases. In other words, the relative

accuracy of the model is worse at low-occupancy values (≤ 20 beds) than at high ones. Although low-

occupancy periods are not common (as indicated by the cooler values), the magnitude of the errors is such

that it can have a noticeable effect on the overall MAPE. We should note, however, that the models tend to

overestimate future occupancy (ẑt+1/zt+1 > 1), especially in this region. In practice, healthcare practitioners

might be more comfortable with a model that overestimates occupancy (and incentivizes them to be more

conservative) than underestimates.
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Figure B.4 In- and out-of-sample MAE for deep set estimators with architectures of the form ϕ : p–64–d and

ρ : d–64–1

Figure B.5 Scatter plot of the remaining occupancy zt+1 (x-axis) vs. the relative predicted occupancy ẑt+1/zt+1

(y-axis) for the deep set estimator, on the training dataset.
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Appendix EC.1: Methods: Prediction Models and Metrics
EC.1.1. Random forests

Random forests are a popular and effective machine learning method for regression and classifica-

tion tasks (Breiman 2001). They are an example of ensemble methods, which are models consisting

of a group of weak learners that are combined to create a strong model.

In a random forest, each weak learner is a decision tree. Each tree in the random forest is trained

on a different subset of the data, and the subsets are chosen randomly with replacement. This

process is known as bootstrapping. Additionally, a random subset of the overall available features

in the data is chosen for each tree to learn on. To make a prediction, the random forest averages the

predictions of all the decision trees in the forest. For classification tasks this amounts to selecting

the label with the highest number of votes by all the trees. Crucially we can also obtain a notion

of predicted probability for each class from the random forest classifier by measuring the fraction

of trees voting for a given class.

In terms of hyper-parameters, we consider the following in our implementation: For classification

models, we tune the maximum depth of each tree, the maximum number of features considered

by each tree, and the maximum number of samples used by each tree. For regression models we

use the scikit-learn default parameters (Pedregosa et al. 2011) except for the maximum number

of features considered (whose default parameter is
√
p where p is the total number of available

features), which we set to be a third of the number of features, p/3, as recommended in Hastie

et al. (2009, Chapter 15). We calibrate hyper-parameters using grid search and k-fold (k = 4)

cross-validation on the training set.

EC.1.2. Gradient boosting

Gradient boosting is a machine learning method for regression and classification problems, and is

another example of an ensemble method. Similar to random forests, the weak learners in a gradient

boosting model are decision trees. However, in gradient boosting, the model starts with a base

learner and then in each successive step, a new weak learner is trained to correct the mistakes of

the incumbent model. The final model is a weighted sum of the individual weak models, where the

weights are learned using the gradient descent algorithm.

XGBoost (eXtreme Gradient Boosting) is a popular library for efficiently training powerful

gradient boosting models (Chen and Guestrin 2016). XGBoost has been shown to outperform other
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standard ensemble methods on both clinical prediction tasks (Chang et al. 2019, Wang et al. 2020)

and operational tasks such as predicting number of hospital admissions (King et al. 2022).

The hyper-parameters of the XGB models are the number of trees in the ensemble, the learning

rate, and the maximum depths of the trees. We calibrate hyper-parameters using grid search and

k-fold (k= 4) cross-validation on the training set.

EC.1.3. Neural Networks

Neural networks are a class of nonlinear models that are the cornerstone of deep learning (Good-

fellow et al. 2016).

A neural network can be described as a series of layers, with each layer consists of units (or

neurons). Denoting zℓ the output vector of layer ℓ, each unit of layer ℓ+ 1 returns an output of

the form f(w⊤zℓ + b), where f is called an activation function (we take the ReLu function f(t) =

max(0, t) in our experiments) and where w/b are unit-specific weights/intercept. For simplicity, we

consider architectures where layer ℓ serves as an input for (or feeds) layer ℓ+1 only and where all

units from layer ℓ are connected to all units in layer ℓ+1 (fully connected). Hence, the architecture

of the network can be summarized by the size (i.e., the number of units) in each layer, starting from

the input layer (corresponding to the input vector x∈Rp). For example, linear/logistic regression

models can be represented by neural networks of the form p–1; a neural network with 2 hidden

layers of size 25 and predicting a scalar output is of the form p–25–25–1.

One of the main drivers for the broad adoption of neural networks in practice is the development

of open-source frameworks to define and train neural networks efficiently, such as TensorFlow or

PyTorch. We use TensorFlow in our experiments.

In terms of architecture, we do our best to compare architectures with the same number of param-

eters across the three approaches (namely, 9,600). For the time-series and bottom-up approach,

we consider architectures of the form p–64–64–64–1. For the direct approach, our focal architecture

is ϕ : p–64–64 and ρ : 64–64–1.

Every model is trained using the Adam optimizer, a batch size of 64, and a learning rate of

0.001. To avoid overfitting, models are trained for up to 1,000 epochs with the mean squared error

(or the binary cross entropy loss, for classification) on a holdout validation set used as an early

stopping criterion (patience parameter of 25 epochs).

EC.1.4. Isotonic regression

A flexible, nonparametric method to calibrate the output probabilities of a binary classifier is to

partition the predicted probabilities into bins, pb, and to estimate an empirical probability qb for

each such bin. We then replace the predicted probability pb with qb. This general approach is known

as histogram binning (Zadrozny and Elkan 2001, Murphy 2023).
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To avoid overfitting, we can replace the predicted probabilities pb by f(pb) for some well-

structured function f instead. For example, we can calibrate f so that it is monotically nonde-

creasing and fits qb as closely as possible, i.e., solve

min
q̂b

∑
b

(qb − q̂b)
2 s.t. q̂b ≤ q̂c if pb ≤ pc for all pairs of bins (b, c).

This calibration approach is specifically referred to as isotonic regression (Zadrozny and Elkan

2001, Murphy 2023) and is the one we use in this paper.

Alternatively, we can find f by fitting a logistic model to predict qb as a function pb.

EC.1.5. Performance metrics

Our final prediction task (predicting remaining occupancy in the ED), can be seen as a regression

task. Accordingly, we measure prediction error using different metrics commonly used in regression:

the mean absolute error (MAE) and the mean absolute percentage error (MAPE). Formally, if yi

denote the target outcome for sample i= 1, . . . , n, and ŷi denote our prediction, MAE and MAPE

are defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| and MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ .
We also report the proportion of variance explained by the model, i.e., R2, defined as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
with ȳ :=

1

n

n∑
i=1

yi.

When comparing patient-level binary classification models, we measure accuracy using the area

under the receiver operating characteristic curve (AUC), which also represents the probability of

correctly prioritizing two random samples with label 0 and 1 respectively. The AUC can take any

value from 0.5 to 1, with 1 indicating a perfect classifier.

For classification models, another important property is calibration. A model is said to be ‘cali-

brated’ when the predicted probabilities match the empirical frequency of event occurrence (Guo

et al. 2017). A common calibration measure is the Expected Calibration Error (ECE; see Guo

et al. 2017, Naeini et al. 2015). Consider the same notations as above and further assume that

yi ∈ {0,1} and ŷi ∈ [0,1]. To compute the ECE, we discretize the interval [0,1] into B bins of the

form ( b−1
B

, b
B
]. Let Ib ⊆ {1, . . . , n} denote the set of observations in bin b, i.e., the samples i such

that the predicted probability ŷi belongs to ( b−1
B

, b
B
]. Then, for each bin, we define the accuracy

and confidence of the bin as

acc(Ib) :=
1

|Ib|
∑
i∈Ib

yi, and conf(Ib) =
1

|Ib|
∑
i∈Ib

ŷi.
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In other words, the accuracy and confidence correspond to the empirical average of yi and ŷi

respectively. The ECE is defined as the weighted average of the absolute difference between accuracy

and confidence:

ECE :=
B∑

b=1

|Ib|
n

|acc(Ib)− conf(Ib)|.

Visually, the accuracy acc(Ib) can be represented as a function of the confidence conf(Ib)—see

Figure 4 for example—and the ECE measures the distance between this curve and the diagonal,

which corresponds to perfect calibration. We refer to Murphy (2023) for a generalization of ECE

for multi-class classification.

Appendix EC.2: Analytical Comparison of Distribution Shift
Detection at Patient and Observation Levels

Distribution shift, which generally refers to a change in the data distribution between the training

and testing phases, is a serious hurdle in the adoption of machine learning systems in healthcare

(Challen et al. 2019). The first step involves the efficient detection of distribution shifts (Vovk et al.

2021).

In this section, we illustrate the impact of the misalignment between the patient- and system-

level point of view, on the definition and detection of nonstationarity. Indeed, most studies related

to predictions of patient-level outcomes report summary statistics on=f patient-level covariates

on the dataset where each patient contributes equally. However, as we illustrated in a previous

analysis (Section 2.4), for system-level prediction, each patient contributes proportionately to their

length of stay. Here, we show analytically that a change can be considered statistically significant

at a patient level and become insignificant for system-level prediction, or vice versa.

We assume that we have access to a single patient covariate xpatient
i ∈R (which we later denote xi

for concision) which can be used to predict length of stay. We denote the length of stay of patient i,

λi, which we consider here as a continuous variable. For simplicity, we assume that (xi, λi) follows

a multivariate normal distribution, whose parameters are unknown. We denote µx, σ
2
x (resp µλ, σ

2
λ)

the mean and variance of x (resp. λ) and let ρ ∈ [−1,1] denote the correlation factor between xi

and λi. Note that we assume µx, σ
2
x, µλ, σ

2
λ, ρ are all unknown. Formally, we write(

xi

λi

)
∼N

((
µx

µλ

)
,

(
σ2
x ρσxσλ

ρσxσλ σ2
λ

))
.

We consider a simple example of distributional shift: We assume that we have two time periods,

which we refer to as the training and test set respectively, with the training period ending at

time T train. Assume that the mean of xi shifts from µx to µx + ε after T train (everything else

remaining equal). Let S1 = {i : ∃t ≤ T train for which δit = 1} be the patients in the training set
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and S2 = {1, . . . ,N} \ S1 be the patients in the test set. Define N1 := |S1| and N2 := |S2|. Let

X1 =
1
N1

∑
i∈S1

xi and X2 =
1
N2

∑
j∈S2

xj be our mean estimates in the respective time periods.

We investigate the ability of a t-test to detect the distribution shift. At a patient level, the t-test

statistic is given by

Tp =
X2 −X1

Sp

√
1
N1

+ 1
N2

, where S2
p :=

1

N1 +N2 − 2

(∑
i∈S1

(xi −X1)
2 +

∑
j∈S2

(xj −X2)
2
)

is the pooled sample variance.

However, for system-level predictions, the relevant dataset is one where each patient is weighted

proportionately to their length of stay. This is equivalent to detecting a shift in the average of

λixi instead. Although only the mean of xi changes, note that both the mean and variance of λixi

vary. Let Y 1 =
1
N1

∑
i∈S1

λixi and Y 2 =
1
N2

∑
j∈S2

λjxj. Accordingly, the associated t-statistic, at

the observation level, is given by

To =
Y 2 −Y 1

So

√
1
N1

+ 1
N2

where S2
o :=

1

N1 +N2 − 2

(∑
i∈S1

(λixi −Y 1)
2 +

∑
j∈S2

(λjxj −Y 2)
2
)
.

Then, as N1,N2 →+∞ with N1/N2 → c for some 0< c<∞, we have Tp →d tp and To →d to with

tp :=
ε

σx

√
1
N1

+ 1
N2

,

to :=
εµλ

s
√

1
N1

+ 1
N2

with s :=

√
(N1 − 1)Var(λixi)+ (N2 − 1)Var(λjxj)

N1 +N2 − 2
,

where xi, λi (resp. xj, λj) are distributed according to the distribution of (x,λ) on the training set

(resp. test set).

If tp > to, then a change of ε can be considered as significant for the patient-level test, while

remaining undetected at a patient-time level. The reverse situation occurs when tp < to. As clear

from the analytical expression above, comparing to with tp boils down to comparing s with µλσx.

Depending on the coefficient of variations of x and λ and that of their correlation coefficient ρ, this

difference can be negative or positive, as we formally state in the special case where ε≪ µx.

Lemma EC.1. In the regime where ε≪ µx, we have

s2 − (µλσx)
2 ≈ σ2

xσ
2
λ

{
ρ2 +2ρ

µx

σx

µλ

σλ

+(
µ2
x

σ2
x

+1)

}
.

In addition, the second-order polynomial in ρ on the right-hand side

• is positive for ρ= 0,

• takes negative values on the interval [−1,1] if and only if 2− 2

∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣+ µ2
x

σ2
x

< 0.
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From the first condition in Lemma EC.1, we conclude that to < tp whenever ρ= 0, meaning that a

change ε in the average value of covariate x can be statistically significant at a patient level but

insignificant at a (patient, time) one. Conversely, one can easily find parameter values satisfying

the second condition (e.g., by fixing µx, σx, and σλ and taking µλ large enough), where it is

possible to have to > tp, i.e., detectable nonstationarity at an observation level but not at a patient

level. Actually, this situation occurs in our dataset for 2 out of 8 patient covariates (see Online

Supplement EC.3.2).

Proof of Lemma EC.1 Following Craig (1936) and Haldane (1942) we have that the first two

moments of x1λ1 and x2λ2 are given by

E(x1λ1) = µxµx + ρσxσλ,

E(x2λ2) = (µx + ε)µλ + ρσxσλ =E(x1λ1)+ εµλ,

Var(x1λ1) = µ2
xσ

2
λ +µ2

λσ
2
x +2ρµxµλσxσλ +(1+ ρ2)σ2

xσ
2
λ,

Var(x2λ2) = (µx + ε)2σ2
λ +µ2

λσ
2
x +2ρ(µx + ε)µλσxσλ +(1+ ρ2)σ2

xσ
2
λ

= 2εµxσ
2
λ + ε2σ2

λ +2ρεµλσxσλ +Var(x1λ1),

s2 =Var(x1λ1)+
N2 − 1

N1 +N2 − 2
(2εµxσ

2
λ + ε2σ2

λ +2ρεµλσxσλ).

If δ≪ µx, then s2 ≈Var(x1λ1) and

s2 − (µλσx)
2 ≈Var(x1λ1)− (µλσx)

2

= µ2
xσ

2
λ +2ρµxµλσxσλ +(1+ ρ2)σ2

xσ
2
λ

= σ2
xσ

2
λ

{
ρ2 +2ρ

µx

σx

µλ

σλ

+(
µ2
x

σ2
x

+1)

}
=: σ2

xσ
2
λP (ρ).

Obviously, P (0) =
µ2
x

σ2
x

+1> 0.

Hence, P (ρ) can take negative values if and only if it admit two real roots, i.e., if and only if its

discriminant

∆ :=

(
µx

σx

µλ

σλ

)2

−
(
µ2
x

σ2
x

+1

)
is positive. In this case, P (ρ) is negative over the open interval (ρ−, ρ+) with

ρ± :=−µx

σx

µλ

σλ

±
√
∆.

However, ρ−ρ+ =
µ2
x

σ2
x

+ ≥ 1 > 0, which implies that ρ− and ρ+ have the same sign and that at

least one of them as magnitude more than 1. Hence, (ρ−, ρ+) intersects [−1,1] if and only if

min{|ρ−|, |ρ+|}< 1.
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Observe that
√
∆<

∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣ so the above condition is equivalent to

ρ− < 1 if − µx

σx

µλ

σλ

≥ 0

ρ+ >−1 if − µx

σx

µλ

σλ

< 0
⇐⇒

√
∆>

∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣− 1.

As a result, we can say that P (ρ) takes negative values on the interval [−1,1] if and only if∆> 0
√
∆>

∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣− 1
⇐⇒ ∆>

(∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣− 1

)2

⇐⇒ 2− 2

∣∣∣∣µx

σx

µλ

σλ

∣∣∣∣+ µ2
x

σ2
x

< 0.

□

Appendix EC.3: Additional Data Statistics and Figures

In this section, we provide additional description of our data for ED occupancy prediction.

EC.3.1. Data description

We present summary statistics for the length of stay (LoS) in the ED and all patient-level features

in Table EC.1. We observe that LoS varies greatly among patients in our dataset with a standard

deviation of 643 minutes for a 423-minute mean. Figure EC.1 provides a histogram of the LoS of

all patients visiting the ED during our study period (left panel, log-scale for the vertical axis) as

well as a histogram of the LoS of all patients staying less than 48 hours. Note a bump in Figure

EC.1(b) at 1,440 minutes, i.e., 24 hours. After discussion with our partner hospital, we believe this

bump results from a directive at our partner hospital of keeping no more than 5% of patients in

the ED for more than 24 hours.

The demographic feature columns (Female and Age) show that about 51% of the patients were

female and the mean age of all patients was about 45 years old, with a a standard deviation of 25

years. The range of recorded values for vital sign measurements were validated as reasonable by

our partner hospital. The median KTAS level was 4. Note that primary symptom code is excluded

from Table EC.1 due to being an unordered categorical variable.

Table EC.1 Summary statistics and percentage missing for length of stay and patient-level features

LoS (min) Female Age SBP DBP PR RR Temp (◦C) SpO2 KTAS

Mean 422.62 0.51 45.46 110.62 65.86 90.50 18.95 37.04 97.55 3.50
STD 642.96 25.35 50.38 30.23 21.77 3.71 0.85 3.63 0.76
Q1 111.00 26.23 103.00 60.00 75.00 18.00 36.50 97.00 3.00
Median 224.00 50.08 121.00 73.00 87.00 18.00 36.90 98.00 4.00
Q3 434.00 65.42 140.00 84.00 102.00 20.00 37.40 99.00 4.00
% Missing 0.0 0.0 0.0 2.4 2.4 14.0 14.0 17.0 2.3 3.0
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(a) All patients (b) Patients staying less than 48 hours

Figure EC.1 Distribution of length of stay in the ED between January 9, 2016 and December 31, 2019

Table EC.2 Distribution of KTAS accross the study population and summary statistics on LoS for each KTAS

category

KTAS LoS
Value Frequency Median Mean Std. Dev.

Missing 0.03 55.00 91.46 100.06
Level 1 0.01 129.00 360.40 610.88
Level 2 0.06 317.00 542.03 705.42
Level 3 0.41 306.00 543.95 722.38
Level 4 0.42 182.00 342.13 564.01
Level 5 0.07 110.00 240.82 488.75

Table EC.1 also reports the fraction of missing entries for each patient-level feature. Demographic

information (Female and Age) are systematically observed. Only 3% of patients or less are missing

SBP, DBP, SpO2, KTAS, or primary symptom code. The features with the highest missing rates

(14–17%) are PR, RR, and Temperature. Our strategy for handling missing values depends on the

model being used. If the model can support input with missing entries directly (e.g., XGBoost), we

keep the missing entries as missing. Otherwise (e.g., when using random forests), we replace missing

numerical variables (e.g., vital signs) by the median and encode missing categorical variables (e.g.,

KTAS) by adding ‘missing’ as a new possible category as recommended in Bertsimas et al. (2024).

While Table EC.1 presents summary statistics on the LoS distribution in our full study popula-

tion, Table EC.2 reports the median, average, and standard deviation of LoS stratified by KTAS

value. In our data, the percentage of patients with LoS over four hours is 47%.

EC.3.2. Detecting distribution shifts

Figure 1 clearly indicates a shift in the distribution of our outcome of interest (here the probability

of a patient currently in the ED stays at least four hours). This distribution shift could be due

to nonstationarity in the patient population (covariate shifts) or in the relationship between the

patient covariates and their LoS.
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To assess the relevance of nonstationarity for our predictive task, we compare the distribution

of eight of our patient-level variables on the training and the testing set. Formally, we consider all

the variables presented in Table EC.1 and test whether their mean (t-test) or their distribution

(Kolmogorov-Smirnov test) is the same between the training and the test set. We report the p-values

of these tests in Table 3(a). In summary, for seven out of the nine variables, both tests conclude

that the covariate distribution is different on the training and testing set, with a p-value lower

than 5 · 10−3. Hence, we can conclude that nonstationarity is a prominent issue in our data, even

for demographic or clinical variables that could be thought as more stationary than operational

characteristics of the ED. Age and sex are the only two variables for which we could not reject the

null hypothesis for at least one of the tests.

To detect nonstationarity, we compare the covariates of patients in the training and test set.

However, following the analysis from Section 2.4, we should keep in mind that each predictive

task defines a set of ‘observations’ and that the definition of nonstationarity depends on this

task. In particular, in our case study, we are interested in hourly predictions of patient outcomes,

i.e., our models apply to a dataset where each patient contributes proportionately to their LoS.

Accordingly, we should also test for nonstationarity in that dataset, as reported in Table 3(b). For

Temperature and Female, we observe that, when weighting patients by their LoS (which, again, is

the relevant weighting for our patient-level models), we detect statistically significant changes in

the distributions of both variables, although their means on the patient data does not significantly

change.
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Table EC.3 Results from t- and Kolomogorov-Smirnov (KS) tests to detect nonstationarity in the distribution

of our patient-level variables between the training and testing data.

(a) When patients are weighted equally

Variable
Average t-test KS-test

Training data Test data Statistic p-value Statistic p-value

Age 45.05 46.52 -14.32 * 0.03 *
Temperature 37.04 37.04 -0.00 1.00 0.02 *
SBP 109.92 112.40 -12.11 * 0.03 *
DBP 65.37 67.11 -14.16 * 0.04 *
PR 89.84 92.09 -24.13 * 0.03 *
RR 18.97 18.91 3.73 0.0005 0.11 *
SpO2 97.49 97.69 -12.83 * 0.06 *
Female 0.51 0.51 0.37 0.71 0.00 1.00

Note: ∗: < 10−4

(b) When each patient are weighted proportionately to their LoS

Variable
Average t-test KS-test

Training data Test data Statistic p-value Statistic p-value

Age 54.17 53.79 11.16 * 0.02 *
Temperature 37.18 37.13 35.74 * 0.03 *
SBP 118.26 118.54 -5.13 * 0.01 *
DBP 69.95 70.17 -7.10 * 0.01 *
PR 94.29 94.13 7.08 * 0.02 *
RR 19.14 18.89 47.79 * 0.12 *
SpO2 97.10 97.34 -50.15 * 0.07 *
Female 0.47 0.49 -27.02 * 0.02 *

Note: ∗: < 10−4

In addition to demographic and clinical features, our patient-level predictions also rely on the

time already spent in the ED by each patient. By visual inspection, we observe in Figure EC.2

that this covariate also significantly varies throughout our study period. In particular the average

time already spent for patients in the training set is 776 minutes, while it is 486 minutes only for

patients in the test set.
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Figure EC.2 Evolution of the average (rolling average, for three different time windows) of the variable ‘time

spent in the ED’ over our study period

Appendix EC.4: Literature on Patient-Level Length of Stay
Estimation

There is an extensive literature on predicting LoS in emergency departments and other hospital

units. We refer the reader to Awad et al. (2017), Stone et al. (2022), Bacchi et al. (2022) for

recent surveys. Recent years have seen a growing interest for more sophisticated and sometimes

black-box models, such as neural nets or ensemble methods, whose success compared with simpler

interpretable models is viewed as “irrefutable” (Stone et al. 2022). In this section, we broadly

review the use of three types of models in the LoS prediction literature: regression, classification,

and survival models.

In empirical studies, LoS is used as a proxy for quality of care (see Thomas et al. 1997, Brasel

et al. 2007, for discussions on its relevance) and is involved in linear regression analyses. Yet, the

objective of these works is not to provide accurate estimates of LoS but rather identify causal

factors and quantify the magnitudes of their impact on LoS. Since the distribution of LoS is usually

right-skewed, some regression models apply to the logarithm of the LoS instead.

Discretizing LoS into categories is another alternative to address the right-skewedness of LoS

distribution that has gained increased attention. Out of the 21 publications on predicting medical

inpatient LoS reviewed by Bacchi et al. (2022), 12 of them consider classification models, with

half of them being published after 2018, showing a growing interest for classification models for

LoS prediction. We believe this trend parallels a growing interest for purely predictive models that

achieve high accuracy.

Only one of the 21 reviewed papers simultaneously considers regression and classification models

(Baek et al. 2018). Baek et al. (2018) build LoS predictions across all inpatient admissions of a

tertiary general university hospital in South Korea. They achieve an MAE of 4.68 days and R2 of
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0.267 for the regression task using a linear regression model. They also construct a random forest

classifier that predicts whether a patient stays more than 30 days with an AUC of 0.97. However,

as Bacchi et al. (2022) point out, directly comparing regression and classification approaches solely

on the basis of accuracy is difficult due to the absence of a common metric.

Besides regression and classification, length of stay prediction can also be studied with tools

from survival analysis. In this context, a patient is “surviving” at a given time point if they are

still present in the hospital or unit. We refer the reader to another survey on LoS modeling by

Awad et al. (2017) that discusses survival models for the general hospital LoS prediction task.

Chaou et al. (2017) consider the use of of survival models for ED patients in particular, but with

a focus on identifying and quantifying the relative importance of factors determining LoS rather

than attempting to optimize prediction accuracy. Similar studies such as Agarwal et al. (2021) and

Wang et al. (2022b) identify characteristics of COVID-19 patients that are correlated with longer

hospital lengths of stay. Wang et al. (2022a) adapt a survival forest approach for predicting LoS in

neonatal ICU. We were unable to perform an exhaustive cross-validation of hyper-parameters for

these models due to increased computational cost (especially for nonlinear models such as survival

trees), which prevented us from making a fair comparison with regression and classification models.

Accordingly, we decided not to include survival models in our analysis. Quantile regression models

have also been used to provide probabilistic forecasts of patient LoS or waiting times (see, e.g.,

Arora et al. 2023).

We conclude this section by commenting on the recent literature focusing on ED patients specif-

ically. Kadri et al. (2022) view predicting LoS in a pediatric ED as a regression problem; they use

various nonlinear machine learning methods and obtain the highest accuracy (R2 = 0.871) with

generative adversarial networks. Benbelkacem et al. (2019) formulate the problem of predicting

LoS in a pediatric ED as a classification task and compare the accuracy of several traditional

supervised machine learning models, including naive Bayes, support vector machine, and decision

trees. Close to our work, Gill et al. (2018) and Etu et al. (2022) train models to predict whether

the LoS of ED patients exceeds 4 hours (note that the second study focuses on Covid-19 patients

only) and achieve the best accuracy—AUC about 90%—with gradient boosted trees.

Appendix EC.5: Supplementary Data to Section 7

This section provides complementary information to the extensions presented in Section 7

EC.5.1. Performance across multiple prediction horizons

In Section 7.1, we evaluate the robustness of our findings to the prediction horizon. We replicate

our main analysis (4-hour ahead prediction) to prediction horizons ranging from 1 to 12 hours. We

compare out-of-sample MAE, MAPE, R2, and bias in Table EC.1 and Figure EC.1.
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Table EC.1 Comparison of MAE, MAPE, R2, and bias for our three prediction approaches and for varying

forecasting horizons (rounded to two decimals).

Hour Time Series Bottom-Up Direct

MAE MAPE R2 Bias MAE MAPE R2 Bias MAE MAPE R2 Bias

1 2.42 4.60 0.96 -0.15 2.34 4.46 0.96 0.01 2.40 35.30 0.95 -0.19
2 3.27 7.17 0.92 0.24 3.06 6.94 0.92 -0.04 3.17 37.10 0.91 -0.22
4 3.79 12.40 0.86 0.84 3.66 11.90 0.84 -0.08 3.72 46.90 0.85 0.02
6 3.93 20.10 0.83 0.87 3.59 17.80 0.82 -0.01 3.57 59.40 0.81 -0.14
8 3.94 28.10 0.83 1.56 3.75 28.10 0.90 0.01 3.53 86.70 0.91 -0.17
12 4.24 108.0 0.75 2.05 3.74 51.10 0.78 -0.02 3.43 173.50 0.89 0.19

Figure EC.1 Comparison of out-of-sample MAE, MAPE, R2, and Bias of our three approaches for varying

forecasting horizons.

EC.5.2. Generalization to multiple hospitals

In Section 7.2, we extend our analysis to 10 additional EDs in the Seoul metropolitan area.

As presented in Table 10, these ED services differ in their volume, average length-of-stay, and

patient severity mix, with larger hospitals associated with longer stays and more severe patients.

To appreciate the extent to which longer length of stays are due to different patient severity mix,

Table EC.2 presents the average length of stays in these hospitals, per KTAS level. We observe

that, indeed, more severe patientsspend more time in the ED. However, larger EDs experience

longer LOS than smaller ones, across acuity levels.
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Table EC.2 Average Length of Stay (LOS) by KTAS level for each ED from the NEDIS database.

ED
Average LOS by KTAS Level (minutes)

KTAS 1 KTAS 2 KTAS 3 KTAS 4 KTAS 5

1 166.9 241.5 192.1 108.6 37.6
2 214.9 242.4 193.4 102.7 47.4
3 175.7 314.6 303.9 156.8 50.1
4 129.2 251.9 229.1 153.5 98.0
5 207.2 307.3 234.4 121.3 64.7
6 291.8 529.8 362.5 148.7 85.4
7 184.8 612.5 517.8 184.9 114.8
8 640.6 624.8 455.5 236.9 175.4
9 677.4 572.8 475.9 257.7 275.3
10 713.0 651.0 542.8 312.9 217.4

Average 509.2 516.0 393.5 205.3 109.0

Figure EC.2 reports a range of accuracy metrics for the three approaches, across the 10 hospi-

tals, for the 4-hour prediction problem. For ease of comparison, Figure EC.3 reports the relative

improvement (i.e., reduction) in MAE provided by bottom-up and direct models compared with a

times series approach, and Table EC.3 reports the numbers displayed in Figure EC.2.

Table EC.3 Out-of-sample MAE for 4-hour prediction across our 10 EDs.

ED
Mean Absolute Error (MAE)

Bottom-Up Direct Time Series

1 1.289 1.261 1.460
2 1.102 1.148 1.184
3 1.859 1.832 1.855
4 1.408 1.453 1.512
5 1.508 1.722 1.713
6 3.696 3.088 4.807
7 2.530 2.671 3.343
8 3.912 4.459 5.303
9 4.198 4.316 4.736
10 4.650 4.214 6.643



e-companion to Kim et al.: ED Occupancy Prediction with Patient Data ec15

Figure EC.2 Out-Of-Sample accuracy metrics (MAE, MAPE, R2, Bias) for 4-hour prediction across forecasting

methods and different hospitals.

Figure EC.3 Grouped bar chart showing relative MAE reduction (%) for Bottom-Up and Direct compared to

Time Series at 4 hours.
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